Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4273-4282.DOI: 10.16085/j.issn.1000-6613.2023-1268
• Chemical processes and equipment • Previous Articles
YIN Chenyang1(), LIU Yongfeng1(), CHEN Ruizhe1, ZHANG Lu1, SONG Jin’ou2, LIU Haifeng2
Received:
2023-07-23
Revised:
2023-10-24
Online:
2024-09-02
Published:
2024-08-15
Contact:
LIU Yongfeng
殷晨阳1(), 刘永峰1(), 陈睿哲1, 张璐1, 宋金瓯2, 刘海峰2
通讯作者:
刘永峰
作者简介:
殷晨阳(1999—),男,硕士研究生,研究方向为内燃机。E-mail:1289230877@qq.com。
基金资助:
CLC Number:
YIN Chenyang, LIU Yongfeng, CHEN Ruizhe, ZHANG Lu, SONG Jin’ou, LIU Haifeng. Kinetic simulation of n-hexane pyrolysis reaction based on quantitative calculations[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4273-4282.
殷晨阳, 刘永峰, 陈睿哲, 张璐, 宋金瓯, 刘海峰. 基于量子化学计算的正己烷热解反应动力学模拟[J]. 化工进展, 2024, 43(8): 4273-4282.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1268
温度/K | 总流量 /L·min-1 | n-C6H14流量 /L·min-1 | Ar流量 /L·min-1 |
---|---|---|---|
673 | 0.94973 | 0.009497 | 0.94024 |
723 | 0.88405 | 0.008841 | 0.87521 |
773 | 0.82687 | 0.008269 | 0.81860 |
823 | 0.77664 | 0.007766 | 0.76887 |
863 | 0.74064 | 0.007406 | 0.73523 |
903 | 0.70783 | 0.007078 | 0.70075 |
943 | 0.67781 | 0.006778 | 0.67103 |
983 | 0.65022 | 0.006502 | 0.64372 |
1023 | 0.62480 | 0.006248 | 0.61855 |
1063 | 0.60129 | 0.006013 | 0.59528 |
1103 | 0.57948 | 0.005795 | 0.57369 |
温度/K | 总流量 /L·min-1 | n-C6H14流量 /L·min-1 | Ar流量 /L·min-1 |
---|---|---|---|
673 | 0.94973 | 0.009497 | 0.94024 |
723 | 0.88405 | 0.008841 | 0.87521 |
773 | 0.82687 | 0.008269 | 0.81860 |
823 | 0.77664 | 0.007766 | 0.76887 |
863 | 0.74064 | 0.007406 | 0.73523 |
903 | 0.70783 | 0.007078 | 0.70075 |
943 | 0.67781 | 0.006778 | 0.67103 |
983 | 0.65022 | 0.006502 | 0.64372 |
1023 | 0.62480 | 0.006248 | 0.61855 |
1063 | 0.60129 | 0.006013 | 0.59528 |
1103 | 0.57948 | 0.005795 | 0.57369 |
编号 | 反应 | A/s-1 | Ea/cal·mol-1 |
---|---|---|---|
R39 | C2H5(+M) | 6.01×1013 | 193.2 |
R109 | 2-C6H13(+M) | 4.47×1011 | 28016.2 |
R110 | 3-C6H13(+M) | 3.55×1012 | 28310.5 |
R115 | n-C6H14 | 2.18×1013 | 86959.6 |
R116 | n-C6H14 | 2.18×1013 | 87198.5 |
R122 | n-C6H14+CH3 | 1.57×105 | 7534.0 |
编号 | 反应 | A/s-1 | Ea/cal·mol-1 |
---|---|---|---|
R39 | C2H5(+M) | 6.01×1013 | 193.2 |
R109 | 2-C6H13(+M) | 4.47×1011 | 28016.2 |
R110 | 3-C6H13(+M) | 3.55×1012 | 28310.5 |
R115 | n-C6H14 | 2.18×1013 | 86959.6 |
R116 | n-C6H14 | 2.18×1013 | 87198.5 |
R122 | n-C6H14+CH3 | 1.57×105 | 7534.0 |
1 | 张乐乐, 钱运东, 朱华曈, 等. 加氢原料煤焦油脱水除盐预处理工艺优化限值[J]. 化工进展, 2023, 42(5): 2298-2305. |
ZHANG Lele, QIAN Yundong, ZHU Huatong, et al. Study on optimization limits of dehydration and desalination pretreatment of hydrogenated coal tar[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2298-2305. | |
2 | 王龙, 刘永峰, 毕贵军, 等. 基于量子化学计算柴油在CO2/O2氛围下的燃烧特性[J]. 化工进展, 2022, 41(6): 2948-2958. |
WANG Long, LIU Yongfeng, BI Guijun, et al. Characteristics of diesel combustion under CO2/O2 atmosphere by quantum chemistry calculations[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2948-2958. | |
3 | ZHENG Ming, HAN Xiaoye, ASAD Usman, et al. Investigation of butanol-fuelled HCCI combustion on a high efficiency diesel engine[J]. Energy Conversion and Management, 2015, 98: 215-224. |
4 | HE Yongdi, SONG Jinou, YANG Jiuzhong, et al. Experimental study on n-hexane pyrolysis initiated by 1-nitropropane in a low-pressure flow reactor[J]. Journal of the Energy Institute, 2023, 109: 101290. |
5 | Bilal AYDOĞAN. An experimental examination of the effects of n-hexane and n-heptane fuel blends on combustion, performance and emissions characteristics in a HCCI engine[J]. Energy, 2020, 192: 116600. |
6 | HIRAI Hirotoshi. Molecular dynamics simulations for initial formation process of polycyclic aromatic hydrocarbons in n-hexane and cyclohexane combustion[J]. Chemical Physics, 2021, 548: 111225. |
7 | BAYINDIRLI Cihan, CELIK Mehmet. Investigation of combustion and emission characteristics of n-hexane and n-hexadecane additives in diesel fuel[J]. Journal of Mechanical Science and Technology, 2019, 33(4): 1937-1946. |
8 | HAN Dong, ZHAI Jiaqi, HUANG Zhen. Autoignition of n-hexane, cyclohexane, and methylcyclohexane in a constant volume combustion chamber[J]. Energy & Fuels, 2019, 33(4): 3576-3583. |
9 | VLASOV P A, SMIRNOV V N, TEREZA A M, et al. Effect of pressure on soot formation in the pyrolysis of n-hexane and the oxidation of fuel-rich mixtures of n-heptane behind reflected shock waves[J]. Russian Journal of Physical Chemistry B, 2016, 10(6): 912-921. |
10 | BILLAUD F, ELYAHYAOUI K, BARONNET F. Mechanistic modeling of the pyrolysis of n-hexane[J]. Journal of Analytical and Applied Pyrolysis, 1991, 19: 29-40. |
11 | YASUNAGA Kenji, YAMADA Hiroshi, OSHITA Hidekazu, et al. Pyrolysis of n-pentane, n-hexane and n-heptane in a single pulse shock tube[J]. Combustion and Flame, 2017, 185: 335-345. |
12 | 田原宇, 乔英云. 石油热解过程中自由基调控反应机理的构建与应用[J]. 化工进展, 2021, 40(5): 2928-2932. |
TIAN Yuanyu, QIAO Yingyun. Construction and application of the radical regulation reaction mechanism in petroleum pyrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2928-2932. | |
13 | XU Minggao, ZHU Baozhong, ZHAO Long, et al. Atmospheric-pressure pyrolysis study of chlorobenzene using synchrotron radiation photoionization mass spectrometry[J]. The Journal of Physical Chemistry A, 2021, 125(9): 1949-1957. |
14 | JIA Zhenjian, WANG Zhandong, CHENG Zhanjun, et al. Experimental and modeling study on pyrolysis of n-decane initiated by nitromethane[J]. Combustion and Flame, 2016, 165: 246-258. |
15 | QI Fei. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry[J]. Proceedings of the Combustion Institute, 2013, 34(1): 33-63. |
16 | YUAN Tao, ZHANG Lidong, ZHOU Zhongyue, et al. Pyrolysis of n-heptane: Experimental and theoretical study[J]. The Journal of Physical Chemistry A, 2011, 115(9): 1593-1601. |
17 | LI Wei, ZHANG Yan, MEI Bowen, et al. Experimental and kinetic modeling study of n-propanol and i-propanol combustion: Flow reactor pyrolysis and laminar flame propagation[J]. Combustion and Flame, 2019, 207: 171-185. |
18 | HE Yongdi, SONG Jinou, YANG Jiuzhong, et al. Experimental investigation on the low-pressure pyrolysis of cyclohexane initiated by 1-nitropropane in a flow tube reactor[J]. Journal of Analytical and Applied Pyrolysis, 2023, 170: 105902. |
19 | LI Wang, YANG Jiuzhong, ZHAO Long, et al. Pyrolysis investigation of n-propylamine with synchrotron photoionization and molecular-beam mass spectrometry[J]. Combustion and Flame, 2021, 232: 111511. |
20 | ZHENG Zhihao, LI Wang, WU Lingnan, et al. Pyrolysis study of iso-propylamine with SVUV-photoionization molecular-beam mass spectrometry[J]. Combustion and Flame, 2022, 244: 112232. |
21 | JING Yixuan, CUI Jintao, LIU Bingzhi, et al. Pyrolysis and kinetic study of dimethyl methylphosphonate (DMMP) by synchrotron photoionization mass spectrometry[J]. Combustion and Flame, 2023, 255: 112919. |
22 | LI Wei, YE Lili, FANG Qilong, et al. Exploration on thermal decomposition of cyclopentanone: A flow reactor pyrolysis and kinetic modeling study[J]. Energy & Fuels, 2021, 35(17): 14023-14034. |
23 | WANG H, DAMES E, SIRJEAN B, et al. A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0[Z]. September 19, 2010. |
24 | WEIGEND Florian, AHLRICHS Reinhart. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305. |
25 | CANNEAUX Sébastien, BOHR Frédéric, HENON Eric. KiSThelP: A program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. Journal of Computational Chemistry, 2014, 35(1): 82-93. |
26 | PEPIOT-DESJARDINS P, PITSCH H. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms[J]. Combustion and Flame, 2008, 154(1/2): 67-81. |
27 | LU Tianfeng, LAW Chung K. A directed relation graph method for mechanism reduction[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1333-1341. |
28 | LU Tianfeng, LAW Chung K. Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane[J]. Combustion and Flame, 2006, 144(1/2): 24-36. |
29 | ZHOU Zhongyue, DU Xuewei, YANG Jiuzhong, et al. The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research[J]. Journal of Synchrotron Radiation, 2016, 23(4): 1035-1045. |
30 | XU Qiang, LIU Bingzhi, CHEN Weiye, et al. Comprehensive study of the low-temperature oxidation chemistry by synchrotron photoionization mass spectrometry and gas chromatography[J]. Combustion and Flame, 2022, 236: 111797. |
31 | ZHANG Taichang, ZHANG Lidong, HONG Xin, et al. An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry[J]. Combustion and Flame, 2009, 156(11): 2071-2083. |
32 | MILLER James A, KLIPPENSTEIN Stephen J. Dissociation of propyl radicals and other reactions on a C3H7 potential[J]. The Journal of Physical Chemistry A, 2013, 117(13): 2718-2727. |
33 | 马志豪, 吕恩雨, 董永超, 等. 碳氢燃料在激波管内的裂解试验与动力学研究[J]. 内燃机学报, 2022, 40(5): 420-429. |
MA Zhihao, Enyu LYU, DONG Yongchao, et al. Experiment and kinetic study on pyrolysis of hydrocarbon fuel in shock tube[J]. Transactions of CSICE, 2022, 40(5): 420-429. | |
34 | WU Junjun, NING Hongbo, MA Liuhao, et al. Accurate prediction of bond dissociation energies of large n-alkanes using ONIOM-CCSD(T)/CBS methods[J]. Chemical Physics Letters, 2018, 699: 139-145. |
35 | 李青月. 正己烷热裂解一次自由基反应分子模拟及反应机理研究[D]. 大庆: 东北石油大学, 2015. |
LI Qingyue. Molecular simulation and reaction mechanism of free radical reactions mechanism of n-hexane thermal cracking[D]. Daqing: Northeast Petroleum University, 2015. |
[1] | WANG Dingyou, CHEN Jian, FAN Ruxin, LI Dashun. Mechanism and engineering technology development of hydrocarbons pyrolysis to produce carbon black [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3551-3566. |
[2] | JIN Lijun, LIU Zhengzheng, LI Yang, YANG He, HU Haoquan. Strategy and its application to improve tar yield by coupling catalytic activation of H-rich small molecule with coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3613-3619. |
[3] | CAO Jingpei, YAO Naiyu, PANG Xinbo, ZHAO Xiaoyan, ZHAO Jingping, CAI Shijie, XU Min, FENG Xiaobo, YI Fengjiao. Research progress and development history of coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3620-3636. |
[4] | ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. |
[5] | GU Songqi, SUN Fanfei, WEI Yao, SONG Xingfei, NAN Bing, LI Lina, HUANG Yuying. Time-resolved thermochemical in-situ XAFS methodology [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3747-3755. |
[6] | WU Qi, BAI Boyang, YIN Yongjie, MA Xiaoxun. Relationship between the structure of macerals of Ordos lignite and its pyrolysis characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2370-2385. |
[7] | HUANG Zibo, ZHOU Wenjing, WEI Jinjia. Product evolution and reaction mechanism of low-rank coal pyrolysis based on ReaxFF MD simulation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2409-2419. |
[8] | LIU Xianzhe, HU Zhenzhong, HU Dawei, LI Xian, HE Shize, ZHAO Chunliang, XIA Ciliang, WU Bo, ZHANG Xiaoyong, LUO Guangqian, YAO Hong. Coking performance of extracts from degradative solvent extraction of low-rank coals for coal blending and coke making [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2420-2427. |
[9] | JIAO Kunpeng, ZHAO Zitao, YOU Chenyi, MO Wenlong, GUO Fengjiao, YANG Xiaoqin, ZHANG Shupei, GUO Jia, WEI Xianyong, FAN Xing, AKRAM Naeem. Composition of the alkanolyses soluble portion and pyrolytic products distribution of the insoluble portion from Wucaiwan sub-bituminous coal [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2449-2462. |
[10] | ZHANG Xin, TANG Jiyun, CHEN Juan, SONG Zhanlong, DONG Yong, YAO Hong. Transformation of trace metals Cu and Pb during high temperature flue gas pyrolysis of waste tires [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1606-1613. |
[11] | CHEN Guohui, WANG Junlei, LI Shilong, LI Jinyu, XU Yunfei, LUO Junxiao, WANG Kun. Progress in synthesis of ternary cathode materials for lithium-ion batteries by flame spray pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 971-983. |
[12] | REN Pengkun, ZHONG Zhaoping, YANG Yuxuan, ZHANG Shan, DU Haoran, LI Qian. Control of heavy metals in sludge pyrolysis process by modified sepiolite [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 541-550. |
[13] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[14] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[15] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |