Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3404-3412.DOI: 10.16085/j.issn.1000-6613.2023-0366
• Column: Intelligent chemical equipment and safety • Previous Articles Next Articles
WANG Junjie(), PAN Yanqiu(
), NIU Yabin, YU Lu
Received:
2023-03-10
Revised:
2023-05-24
Online:
2023-08-14
Published:
2023-07-15
Contact:
PAN Yanqiu
通讯作者:
潘艳秋
作者简介:
王俊杰(1997—),女,硕士研究生,研究方向为智能化工。E-mail:18340356569@163.com。
CLC Number:
WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412.
王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412.
项目 | 分子量/g·mol-1 | 密度/ kg·m-3 |
---|---|---|
实际值 | 106.8 | 724.1 |
模拟值 | 107.13 | 727.64 |
相对误差/% | 0.31 | 0.49 |
项目 | 分子量/g·mol-1 | 密度/ kg·m-3 |
---|---|---|
实际值 | 106.8 | 724.1 |
模拟值 | 107.13 | 727.64 |
相对误差/% | 0.31 | 0.49 |
编号 | 反应类型 | 反应数目 | 编号 | 反应类型 | 反应数目 |
---|---|---|---|---|---|
1 | 脱氢芳构化 | 87 | 10 | 正构烷烃异构 | 29 |
2 | 芳烃加氢 | 87 | 11 | 异构化逆反应 | 29 |
3 | 正构烷烃加氢裂化 | 24 | 12 | 芳烃脱烷基 | 177 |
4 | 异构烷烃加氢裂化 | 1934 | 13 | 芳烃甲基转移邻变间 | 1 |
5 | 芳烃侧链加氢裂化 | 135 | 14 | 芳烃甲基转移间变邻 | 1 |
6 | 烷烃脱氢环化 | 982 | 15 | 芳烃甲基转移间变对 | 1 |
7 | 扩环反应(N5→N6) | 1074 | 16 | 芳烃甲基转移对变间 | 1 |
8 | 缩环反应(N6→N5) | 1070 | 17 | 芳烃甲基转移邻变对 | 1 |
9 | 开环反应(N5→P) | 982 | 18 | 芳烃甲基转移对变邻 | 1 |
总计 | 6616 |
编号 | 反应类型 | 反应数目 | 编号 | 反应类型 | 反应数目 |
---|---|---|---|---|---|
1 | 脱氢芳构化 | 87 | 10 | 正构烷烃异构 | 29 |
2 | 芳烃加氢 | 87 | 11 | 异构化逆反应 | 29 |
3 | 正构烷烃加氢裂化 | 24 | 12 | 芳烃脱烷基 | 177 |
4 | 异构烷烃加氢裂化 | 1934 | 13 | 芳烃甲基转移邻变间 | 1 |
5 | 芳烃侧链加氢裂化 | 135 | 14 | 芳烃甲基转移间变邻 | 1 |
6 | 烷烃脱氢环化 | 982 | 15 | 芳烃甲基转移间变对 | 1 |
7 | 扩环反应(N5→N6) | 1074 | 16 | 芳烃甲基转移对变间 | 1 |
8 | 缩环反应(N6→N5) | 1070 | 17 | 芳烃甲基转移邻变对 | 1 |
9 | 开环反应(N5→P) | 982 | 18 | 芳烃甲基转移对变邻 | 1 |
总计 | 6616 |
反应 | 反应频率因子/s-1·MPa-b | 反应 | 反应频率因子/s-1·MPa-b | 反应 | 反应频率因子/s-1·MPa-b |
---|---|---|---|---|---|
6N6脱氢芳构化 | 9.79×1011 | A9侧链加氢裂化 | 1.41×109 | 5N8开环反应 | 9.03×109 |
6N7脱氢芳构化 | 7.42×1011 | A10侧链加氢裂化 | 4.13×108 | 5N9开环反应 | 3.54×1011 |
…… | …… | …… | |||
IP11加氢裂化 | 6.30×1011 | 5N6开环反应 | 6.34×106 | A8甲基转移邻变对 | 7.64×1018 |
A8侧链加氢裂化 | 4.34×1015 | 5N7开环反应 | 8.28×105 | A8甲基转移对变邻 | 8.10×1018 |
反应 | 反应频率因子/s-1·MPa-b | 反应 | 反应频率因子/s-1·MPa-b | 反应 | 反应频率因子/s-1·MPa-b |
---|---|---|---|---|---|
6N6脱氢芳构化 | 9.79×1011 | A9侧链加氢裂化 | 1.41×109 | 5N8开环反应 | 9.03×109 |
6N7脱氢芳构化 | 7.42×1011 | A10侧链加氢裂化 | 4.13×108 | 5N9开环反应 | 3.54×1011 |
…… | …… | …… | |||
IP11加氢裂化 | 6.30×1011 | 5N6开环反应 | 6.34×106 | A8甲基转移邻变对 | 7.64×1018 |
A8侧链加氢裂化 | 4.34×1015 | 5N7开环反应 | 8.28×105 | A8甲基转移对变邻 | 8.10×1018 |
1 | 王子宗, 高立兵, 索寒生. 未来石化智能工厂顶层设计: 现状、 对比及展望[J]. 化工进展, 2022, 41(7): 3387-3401. |
WANG Zizong, GAO Libing, SUO Hansheng. Designing petrochemical smart plant of the future: State of the art, comparison and prospects[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3387-3401. | |
2 | WALID Nabgan, MEHDI Rashidzadeh, BAHADOR Nabgan. The catalytic naphtha reforming process: Hydrodesulfurization, catalysts and zeoforming[J]. Environmental Chemistry Letters, 2018, 16(2): 507-522. |
3 | 徐承恩. 催化重整工艺与工程[M]. 2版. 北京: 中国石化出版社, 2014. |
XU Cheng’en. Catalytic reforming process and engineering[M]. 2nd ed. Beijing: China Petrochemical Press, 2014. | |
4 | 郑丹. 炼油, 向分子水平进军——专访中国石化石油化工科学研究院原院长龙军[J]. 中国石油石化, 2018(21): 38-41. |
ZHENG Dan. Refining oil, marching to molecular level—Interview with Long Jun, former president of China petrochemical research institute[J]. China Petrochem, 2018(21): 38-41. | |
5 | KUO J C W, WEI James. Lumping analysis in monomolecular reaction systems. Analysis of approximately lumpable system[J]. Industrial & Engineering Chemistry Fundamentals, 1969, 8(1): 124-133. |
6 | ZHOU Xiang, HOU Zhen, WANG Jieguang, et al. Molecular-level kinetic model for C12 continuous catalytic reforming[J]. Energy & Fuels, 2018, 32(6): 7078-7085. |
7 | 吴青. 石油分子工程[M]. 北京: 化学工业出版社, 2020. |
WU Qing. Petroleum molecular engineering[M]. Beijing: Chemical Industry Press, 2020. | |
8 | VAN GEEM Kevin M, HUDEBINE Damien, REYNIERS Marie Françoise, et al. Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices[J]. Computers & Chemical Engineering, 2007, 31(9): 1020-1034. |
9 | WANG Kun, LI Shiyu. Modified molecular matrix model for predicting molecular composition of naphtha[J]. Chinese Journal of Chemical Engineering, 2017, 25(12): 1856-1862. |
10 | 周齐宏, 胡山鹰, 李有润, 等. 催化重整过程的分子模拟与优化[J]. 计算机与应用化学, 2004, 21(3): 447-452. |
ZHOU Qihong, HU Shanying, LI Yourun, et al. Molecular modelling and optimisation for catalytic reforming[J]. Computers and Applied Chemistry, 2004, 21(3): 447-452. | |
11 | Rogelio SOTELO-BOYÁS, FROMENT Gilbert F. Fundamental kinetic modeling of catalytic reforming[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1107-1119. |
12 | 王睿通, 刘纪昌, 仲从伟, 等. 基于结构导向集总的催化重整分子水平反应动力学模型[J]. 石油学报(石油加工), 2020, 36(1): 95-105. |
WANG Ruitong, LIU Jichang, ZHONG Congwei, et al. Reaction kinetic model for catalytic reforming based on structure oriented lumping[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 95-105. | |
13 | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009. |
XU Chunming, YANG Chaohe. Petroleum refining engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009. | |
14 | 王连山, 张泉灵, 梁超. 催化重整反应38集总动力学模型及其在连续催化重整中的应用[J]. 化工学报, 2012, 63(4): 1076-1082. |
WANG Lianshan, ZHANG Quanling, LIANG Chao. A 38-lumped kinetic model for reforming reaction and its application in continuous catalytic reforming[J]. CIESC Journal, 2012, 63(4): 1076-1082. | |
15 | MI SAINE AYE Mi, ZHANG Nan. A novel methodology in transforming bulk properties of refining streams into molecular information[J]. Chemical Engineering Science, 2005, 60(23): 6702-6717. |
16 | RIAZI M R. Characterization and properties of petroleum fractions[M]. West Conshohocken, PA: ASTM International, 2005 |
17 | REN Yu, LIAO Zuwei, SUN Jingyuan, et al. Molecular reconstruction of naphtha via limited bulk properties: Methods and comparisons[J]. Industrial & Engineering Chemistry Research, 2019, 58(40): 18742-18755. |
18 | 周红军, 石铭亮, 翁惠新, 等. 芳烃型催化重整集总反应动力学模型[J]. 石油学报(石油加工), 2009, 25(4): 545-550. |
ZHOU Hongjun, SHI Mingliang, WENG Huixin, et al. Lumped kinetic model of aromatic type catalytic naphtha reforming[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2009, 25(4): 545-550. | |
19 | VERNUCCIO Sergio, BROADBELT Linda J. Discerning complex reaction networks using automated generators[J]. AIChE Journal, 2019, 65(8): e16663. |
20 | RANGARAJAN Srinivas, KAMINSKI Ted, Eric VAN WYK, et al. Language-oriented rule-based reaction network generation and analysis: Algorithms of RING[J]. Computers & Chemical Engineering, 2014, 64: 124-137. |
21 | RANGARAJAN Srinivas, BHAN Aditya, DAOUTIDIS Prodromos. Language-oriented rule-based reaction network generation and analysis: Applications of RING[J]. Computers & Chemical Engineering, 2012, 46: 141-152. |
22 | RANGARAJAN Srinivas, BHAN Aditya, DAOUTIDIS Prodromos. Language-oriented rule-based reaction network generation and analysis: Description of RING[J]. Computers & Chemical Engineering, 2012, 45: 114-123. |
23 | RAMAGE Michael P, GRAZIANI Kenneth R, KRAMBECK F J. 6 Development of mobil’s kinetic reforming model[J]. Chemical Engineering Science, 1980, 35(1/2): 41-48. |
24 | 翁惠新, 江洪波, 陈志. 催化重整集总动力学模型(Ⅱ)——实验设计和动力学参数估计[J]. 化工学报, 1994, 45(5): 531-537. |
WENG Huixin, JIANG Hongbo, CHEN Zhi. Lumped model for catalytic reforming ( Ⅱ ) experiment design and kinetic parameter estimation[J]. Journal of Chemical Industry and Engineering (China), 1994, 45(5): 531-537. | |
25 | YI Xiaoyang, ZHANG Peng, HU Changlu. Detailed description of the mathematical modeling of the catalytic naphtha reforming process dynamics[J]. IOP Conference Series: Materials Science and Engineering, 2020, 729(1): 012095. |
26 | 李鹏飞. 连续重整装置的数据驱动建模和重点单元优化[D]. 大连: 大连理工大学, 2022. |
LI Pengfei. Data-driven modeling and key unit optimization of continuous reforming unit[D]. Dalian: Dalian University of Technology, 2022. |
[1] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[2] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[3] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
[4] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[5] | ZENG Siying, YANG Minbo, FENG Xiao. Machine learning-based prediction of coalbed methane composition and real-time optimization of liquefaction process [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5059-5066. |
[6] | JI Xuanyu, LIN Weijian, ZHOU Xiong, BAI Jisong, YANG Yu, KONG Jie, LIAO Chongyang. Research status and progress of waste tire pyrolysis technology [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4498-4512. |
[7] | ZHUANG Yuting, WANG Jianhua, XIANG Zhiyan, ZHAO Juan, XU Qiong, LIU Xianxiang, YIN Dulin. Research progress in preparation and kinetics of γ-valerolactone synthesis from hemicellulose and its derivatives [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3519-3533. |
[8] | DAI Min, YANG Fusheng, ZHANG Zaoxiao, LIU Guilian, FENG Xiao. 3E Multi-objective optimization of hexane oil distillation process based on multi-strategy ensemble optimization algorithm [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2852-2863. |
[9] | LI Guixian, ZHANG Junqiang, YANG Yong, FAN Xueying, WANG Dongliang. A novel PX production shortcut through PX selectivity intensification in toluene and methanol methylation [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2939-2947. |
[10] | SUN Deyun, HU Yanhong, LIU Peng, TANG Mao, HU Ze, LIU Zhaogang, WU Jinxiu. Interaction mechanism of CTAB and Ce3+ in different cerium salt systems (nitrate, sulfate, chloride) [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3212-3220. |
[11] | CHEN Lei, YAN Xingqing, HU Yanwei, YU Shuai, YANG Kai, CHEN Shaoyun, GUAN Hui, YU Jianliang, MAHGEREFTEH Haroun, MARTYNOV Sergey. Research progress on fracture control of accidental leakage and decompression in CO2 pipeline transportation [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1241-1255. |
[12] | ZHU Tao, HAN Yiwei, LIU Shuai, XIE Wei, YUAN Bo, SONG Huiping, CHEGN Fangqin. Progress in electrocatalysis by single-atom site catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 666-681. |
[13] | LI Dan, YANG Siyu, QIAN Yu. Syngas cryogenic separation process combined with lithium bromide absorption refrigeration and organic Rankine cycle [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5236-5246. |
[14] | GUO Jinrong, CHENG Peng, JIA Li, GUO Jingnan, WANG Yanlin, ZHANG Yongqiang, QIAO Xiaolei, FAN Baoguo. Combustion characteristics and mercury emission characteristics of high sulfur coal slime [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 411-420. |
[15] | WANG Yanqian, WANG Yuanyang. Research progress of Fischer-Tropsch synthesis in microreactor [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 185-191. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 500
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 252
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |