Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (2): 971-983.DOI: 10.16085/j.issn.1000-6613.2023-0284
• Materials science and technology • Previous Articles Next Articles
CHEN Guohui(), WANG Junlei, LI Shilong, LI Jinyu, XU Yunfei, LUO Junxiao, WANG Kun()
Received:
2023-02-28
Revised:
2023-06-12
Online:
2024-03-07
Published:
2024-02-25
Contact:
WANG Kun
陈国徽(), 王君雷, 李世龙, 李金宇, 徐运飞, 罗俊潇, 王昆()
通讯作者:
王昆
作者简介:
陈国徽(1999—),男,硕士研究生,研究方向为火焰合成电极材料。E-mail:cgh@tju.edu.cn。
基金资助:
CLC Number:
CHEN Guohui, WANG Junlei, LI Shilong, LI Jinyu, XU Yunfei, LUO Junxiao, WANG Kun. Progress in synthesis of ternary cathode materials for lithium-ion batteries by flame spray pyrolysis[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 971-983.
陈国徽, 王君雷, 李世龙, 李金宇, 徐运飞, 罗俊潇, 王昆. 火焰喷雾热解制备锂离子电池三元正极材料研究进展[J]. 化工进展, 2024, 43(2): 971-983.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0284
制备方法 | 电极材料 | 反应温度 和时间 | 后处理温度 和时间 | 总耗时 | 文献 |
---|---|---|---|---|---|
固相法 | NCA | 540℃预烧结6h | 720℃退火24h | 30h | [ |
共沉淀法 | NCM111 | 480℃加热5h | 900℃退火10h | 15h | [ |
溶胶-凝胶法 | NCM811 | 480℃分解 有机组分5h | 750℃退火15h | 20h | [ |
水热法 | NCM811 | 500℃下氧化5h | 800℃退火10h | 15h | [ |
火焰喷雾热解 | NCM111 | 燃烧过程毫秒级 | 700℃退火3h | 3h | [ |
制备方法 | 电极材料 | 反应温度 和时间 | 后处理温度 和时间 | 总耗时 | 文献 |
---|---|---|---|---|---|
固相法 | NCA | 540℃预烧结6h | 720℃退火24h | 30h | [ |
共沉淀法 | NCM111 | 480℃加热5h | 900℃退火10h | 15h | [ |
溶胶-凝胶法 | NCM811 | 480℃分解 有机组分5h | 750℃退火15h | 20h | [ |
水热法 | NCM811 | 500℃下氧化5h | 800℃退火10h | 15h | [ |
火焰喷雾热解 | NCM111 | 燃烧过程毫秒级 | 700℃退火3h | 3h | [ |
产物 | 添加剂 | 退火条件 | 工作电压 | 初始放电比容量 | 电化学循环性能 | 来源 |
---|---|---|---|---|---|---|
NCM111 | 无 | 900℃,2h | 3.0~4.3V | 0.1C,163.3mAh/g | 1C下循环100次,保持率85.5% | [ |
NCM111 | 无 | 750℃,2h | 3.0~4.7V | 1C,180.0mAh/g | 1C下循环500次,保持率80.0% | [ |
NCM111 | 无 | 800℃,3h | 2.8~4.5V | 18mA/g,168.0mAh/g | 18mA/g下循环30次,保持率71.4% | [ |
NCA | 尿素 | 800℃,10h | 2.7~4.3V | 0.1C,155.0mAh/g | 0.2C下循环50次,保持率92.0% | [ |
NCA | 柠檬酸 | 800℃,9h | 2.7~4.3V | 0.1C,143.0mAh/g | 0.1C下循环20次,保持率92.0% | [ |
NCM811 | 尿素 | 875℃,1/3h | 2.7~4.3V | 0.1C,198.3mAh/g | 1C下循环100次,保持率83.3% | [ |
NCM811 | 无 | 750℃,18h | 2.8~4.3V | 0.1C,185.5mAh/g | 0.5C下循环45次,保持率81.1% | [ |
NCM811 | 无 | 825℃,20h | 2.7~4.3V | 0.1C,186.5mAh/g | 0.33C下循环100次,保持率73.0% | [ |
NCM811 | 镝盐 | 800℃,12h | 2.8~4.3V | 0.1C,197.4mAh/g | 1C下循环50次,保持率91.6% | [ |
产物 | 添加剂 | 退火条件 | 工作电压 | 初始放电比容量 | 电化学循环性能 | 来源 |
---|---|---|---|---|---|---|
NCM111 | 无 | 900℃,2h | 3.0~4.3V | 0.1C,163.3mAh/g | 1C下循环100次,保持率85.5% | [ |
NCM111 | 无 | 750℃,2h | 3.0~4.7V | 1C,180.0mAh/g | 1C下循环500次,保持率80.0% | [ |
NCM111 | 无 | 800℃,3h | 2.8~4.5V | 18mA/g,168.0mAh/g | 18mA/g下循环30次,保持率71.4% | [ |
NCA | 尿素 | 800℃,10h | 2.7~4.3V | 0.1C,155.0mAh/g | 0.2C下循环50次,保持率92.0% | [ |
NCA | 柠檬酸 | 800℃,9h | 2.7~4.3V | 0.1C,143.0mAh/g | 0.1C下循环20次,保持率92.0% | [ |
NCM811 | 尿素 | 875℃,1/3h | 2.7~4.3V | 0.1C,198.3mAh/g | 1C下循环100次,保持率83.3% | [ |
NCM811 | 无 | 750℃,18h | 2.8~4.3V | 0.1C,185.5mAh/g | 0.5C下循环45次,保持率81.1% | [ |
NCM811 | 无 | 825℃,20h | 2.7~4.3V | 0.1C,186.5mAh/g | 0.33C下循环100次,保持率73.0% | [ |
NCM811 | 镝盐 | 800℃,12h | 2.8~4.3V | 0.1C,197.4mAh/g | 1C下循环50次,保持率91.6% | [ |
1 | LI Matthew, LU Jun, CHEN Zhongwei, et al. 30 Years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561. |
2 | KIM Haegyeom, HONG Jihyun, PARK Kyu-Young, et al. Aqueous rechargeable Li and Na ion batteries[J]. Chemical Reviews, 2014, 114(23): 11788-11827. |
3 | 朱晟, 彭怡婷, 闵宇霖, 等. 电化学储能材料及储能技术研究进展[J]. 化工进展, 2021, 40(9): 4837-4852. |
ZHU Sheng, PENG Yiting, MIN Yulin, et al. Research progress on materials and technologies for electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4837-4852. | |
4 | MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11: 1550. |
5 | TAN Xinru, ZHANG Maolin, LI Jing, et al. Recent progress in coatings and methods of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials: A short review[J]. Ceramics International, 2020, 46: 21888-21901. |
6 | ZANG Guiyan, ZHANG Jianan, XU Siqi, et al. Techno-economic analysis of cathode material production using flame-assisted spray pyrolysis[J]. Energy, 2021, 218: 119504. |
7 | XIE Hongbin, DU Ke, HU Guorong, et al. Synthesis of LiNi0.8Co0.15Al0.05O2 with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties[J]. Journal of Materials Chemistry A, 2015, 3(40): 20236-20243. |
8 | 王志鸿, 朱华威, 余海峰, 等. 共沉淀法制备高镍氧化物正极材料前体研究进展[J]. 化工进展, 2021, 40(9): 5097-5106. |
WANG Zhihong, ZHU Huawei, YU Haifeng, et al. Research process on the synthesis of Ni-rich oxide cathode precursors by co-precipitation method[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5097-5106. | |
9 | KOIRALA R, PRATSINIS S E, BAIKER A. Synthesis of catalytic materials in flames: Opportunities and challenges[J]. Chemical Society Reviews, 2016, 45(11): 3053-3068. |
10 | MEIERHOFER F, FRITSCHING U. Synthesis of metal oxide nanoparticles in flame sprays: Review on process technology, modeling, and diagnostics[J]. Energy & Fuels, 2021, 35(7): 5495-5537. |
11 | XIA Shubiao, LI Fushao, CHENG Feixiang, et al. Synthesis of spherical fluorine modified gradient Li-ion battery cathode material LiNi0.80Co0.15Al0.05O2 by simple solid phase method[J]. Journal of the Electrochemical Society, 2018, 165(5): A1019-A1026. |
12 | LEE M-H, KANG Y-J, S-T MYUNG, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation[J]. Electrochimica Acta, 2004, 50(4): 939-948. |
13 | LU Huaquan, ZHOU Haitao, SVENSSON A M, et al. High capacity Li[Ni0.8Co0.1Mn0.1]O2 synthesized by sol-gel and co-precipitation methods as cathode materials for lithium-ion batteries[J]. Solid State Ionics, 2013, 249/250: 105-111. |
14 | WU Haiwei, PANG Xiaofei, BI Jingxuan, et al. Cellulose nanofiber assisted hydrothermal synthesis of Ni-rich cathode materials with high binding particles for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 829: 154571. |
15 | KIM Jung Hyun, YI Jang Heui, You Na KO, et al. Electrochemical properties of nano-sized LiNi1/3Co1/3Mn1/3O2 powders in the range from 56 to 101nm prepared by flame spray pyrolysis[J]. Materials Chemistry and Physics, 2012, 134(1): 254-259. |
16 | CHOI Seung Ho, KIM Jung Hyun, You Na KO, et al. Preparation and electrochemical properties of glass-modified LiCoO2 cathode powders[J]. Journal of Power Sources, 2013, 244: 129-135. |
17 | LI Haipeng, ERINMWINGBOVO C, BIRKENSTOCK J, et al. Double flame-fabricated high-performance AlPO4/LiMn2O4 cathode material for Li-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(5): 4428-4443. |
18 | KRUMEICH F, WASER O, PRATSINIS S E. Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in situ analysis[J]. Journal of Solid State Chemistry, 2016, 242: 96-102. |
19 | ZHANG Jianan, MULDOON Valerie L, DENG Sili. Accelerated synthesis of Li(Ni0.8Co0.1Mn0.1)O2 cathode materials using flame-assisted spray pyrolysis and additives[J]. Journal of Power Sources, 2022, 528: 231244. |
20 | YUDHA C S, MUZAYANHA S U, RAHMAWATI M, et al. Fast production of high performance LiNi0.815Co0.15Al0.035O2 cathode material via urea-assisted flame spray pyrolysis[J]. Energies, 2020, 13(11): 2757. |
21 | DEBECKER D P, LE BRAS S, BOISSIÈRE C, et al. Aerosol processing: A wind of innovation in the field of advanced heterogeneous catalysts[J]. Chemical Society Reviews, 2018, 47(11): 4112-4155. |
22 | PRATSINIS S E. Flame aerosol synthesis of ceramic powders[J]. Progress in Energy and Combustion Science, 1998, 24(3): 197-219. |
23 | TEOH Wey Yang, AMAL R, MÄDLER L. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication[J]. Nanoscale, 2010, 2(8): 1324-1347. |
24 | STROBEL R, BAIKER A, PRATSINIS S E. Aerosol flame synthesis of catalysts[J]. Advanced Powder Technology, 2006, 17(5): 457-480. |
25 | SHENG Yuan, KRAFT M, XU Rong. Emerging applications of nanocatalysts synthesized by flame aerosol processes[J]. Current Opinion in Chemical Engineering, 2018, 20: 39-49. |
26 | CHEN Hongjun, MULMUDI H K, TRICOLI A. Flame spray pyrolysis for the one-step fabrication of transition metal oxide films: Recent progress in electrochemical and photoelectrochemical water splitting[J]. Chinese Chemical Letters, 2020, 31(3): 601-604. |
27 | RIGHETTONI M, TRICOLI A, PRATSINIS S E. Si: WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis[J]. Analytical Chemistry, 2010, 82(9): 3581-3587. |
28 | STROBEL R, MÄDLER L, PIACENTINI M, et al. Two-nozzle flame synthesis of Pt/Ba/Al2O3 for NO x storage[J]. Chemistry of Materials, 2006, 18(10): 2532-2537. |
29 | LI Shuiqing, REN Yihua, BISWAS P, et al. Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics[J]. Progress in Energy and Combustion Science, 2016, 55: 1-59. |
30 | SAADATKHAH N, AGHAMIRI S, TALAIE M R, et al. Flame-assisted spray pyrolysis of lithium and manganese precursors to polycrystalline LiMn2O4 [J]. The Canadian Journal of Chemical Engineering, 2019, 97(8): 2299-2308. |
31 | BUESSER B, PRATSINIS S E. Design of nanomaterial synthesis by aerosol processes[J]. Annual Review of Chemical and Biomolecular Engineering, 2012, 3: 103-127. |
32 | STROBEL R, PRATSINIS S E. Flame aerosol synthesis of smart nanostructured materials[J]. Journal of Materials Chemistry, 2007, 17(45): 4743-4756. |
33 | TORABMOSTAEDI H, ZHANG Tao. Numerical simulation of TiO2 nanoparticle synthesis by flame spray pyrolysis[J]. Powder Technology, 2018, 329: 426-433. |
34 | PAN J, LIBERA J A, PAULSON N H, et al. Flame stability analysis of flame spray pyrolysis by artificial intelligence[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(7/8): 2215-2228. |
35 | TRAN-PHU T, DAIYAN R, Xuan Minh Chau TA, et al. From stochastic self-assembly of nanoparticles to nanostructured (photo)electrocatalysts for renewable power-to-X applications via scalable flame synthesis[J]. Advanced Functional Materials, 2022, 32(13): 2110020. |
36 | LENG Jin, WANG Zhixing, WANG Jiexi, et al. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion[J]. Chemical Society Reviews, 2019, 48(11): 3015-3072. |
37 | LEE Taewon, CHO Kihyun, Jangwon OH, et al. Electrochemical characteristics of LiCoO2 nano-powder synthesized via aerosol flame deposition (AFD)[J]. Journal of Physics and Chemistry of Solids, 2008, 69(5/6): 1242-1245. |
38 | KIM Jung Hyun, HONG Young Jun, PARK Byung Kyu, et al. Nano-sized LiNi0.5Mn1.5O4 cathode powders with good electrochemical properties prepared by high temperature flame spray pyrolysis[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(4): 1204-1208. |
39 | MAJERIČ P, RUDOLF R. Advances in ultrasonic spray pyrolysis processing of noble metal nanoparticles-review[J]. Materials, 2020, 13(16): 3485. |
40 | 孙通, 许东东, 宋民航, 等. 火焰合成法制备TiO2的燃烧发生器研究进展[J]. 化工进展, 2022, 41(1): 17-29. |
SUN Tong, XU Dongdong, SONG Minhang, et al. Research progress of the burners in synthesis of TiO2 by combustion method[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 17-29. | |
41 | ZHANG Jianan, SINGH G, XU Siqi, et al. A scalable approach of using biomass derived glycerol to synthesize cathode materials for lithium-ion batteries[J]. Journal of Cleaner Production, 2020, 271: 122518. |
42 | PARK Jin-Sung, KIM Jin Koo, HONG Jeong Hoo, et al. Advances in the synthesis and design of nanostructured materials by aerosol spray processes for efficient energy storage[J]. Nanoscale, 2019, 11(41): 19012-19057. |
43 | LIN Ying, ABRAM C M, SHI Xuan, et al. Enhanced thermal stability of aerosol-synthesized Ni-rich Li-ion battery cathode materials via concentration-gradient Ca doping[J]. ACS Applied Energy Materials, 2022, 5(9): 10751-10757. |
44 | POKHREL S, MÄDLER L. Flame-made particles for sensors, catalysis, and energy storage applications[J]. Energy & Fuels, 2020, 34(11): 13209-13224. |
45 | ZHANG Jianan, XU Siqi, HAMAD K I, et al. High retention rate NCA cathode powders from spray drying and flame assisted spray pyrolysis using glycerol as the solvent[J]. Powder Technology, 2020, 363: 1-6. |
46 | LENGYEL M, ELHASSID D, ATLAS G, et al. Development of a scalable spray pyrolysis process for the production of non-hollow battery materials[J]. Journal of Power Sources, 2014, 266: 175-178. |
47 | 张珊, 王珊, 陈卫晓, 等. 浓度梯度型锂离子电池富镍氧化物正极材料[J]. 化工进展, 2021, 40(3): 1506-1516. |
ZHANG Shan, WANG Shan, CHEN Weixiao, et al. Lithium-ion batteries with nickel-rich oxide concentration gradient cathode materials[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1506-1516. | |
48 | Hyung-Joo NOH, YOUN Sungjune, YOON Chong Seung, et al. Comparison of the structural and electrochemical properties of layered Li[Ni x Co y Mn z ]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233: 121-130. |
49 | OHZUKU T, MAKIMURA Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries[J]. Chemistry Letters, 2001, 30(7): 642-643. |
50 | YAMADA M, BI Dongying, KODERA T, et al. Mass production of cathode materials for lithium ion battery by flame type spray pyrolysis[J]. Journal of the Ceramic Society of Japan, 2009, 117(1369): 1017-1020. |
51 | OGIHARA T, KODERA T, MYOUJIN K, et al. Preparation and electrochemical properties of cathode materials for lithium ion battery by aerosol process[J]. Materials Science and Engineering B, 2009, 161(1/2/3): 109-114. |
52 | ABRAM C, SHAN Jingning, YANG Xiaofang, et al. Flame aerosol synthesis and electrochemical characterization of Ni-rich layered cathode materials for Li-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(2): 1319-1329. |
53 | WANG Tao, LUO Huimin, FAN Juntian, et al. Flux upcycling of spent NMC111 to nickel-rich NMC cathodes in reciprocal ternary molten salts[J]. Iscience, 2022, 25: 103801. |
54 | CHOI Kyu Hwan, LIU Xuyan, DING Xiaohong, et al. Design strategies for development of nickel-rich ternary lithium-ion battery[J]. Ionics, 2020, 26(3): 1063-1080. |
55 | 张文林, 刘雪娇, 马青查, 等. 高镍锂离子电池三元材料NCM电解质的应用[J]. 化工进展, 2021, 40(4): 2175-2187. |
ZHANG Wenlin, LIU Xuejiao, MA Qingcha, et al. Application of NCM electrolyte for nickel-rich lithium ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2175-2187. | |
56 | LIANG Yujia, KU Kyojin, LIN Yulin, et al. Process engineering to increase the layered phase concentration in the immediate products of flame spray pyrolysis[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 26915-26923. |
57 | PURWANTO A, YUDHA C S, IKHWAN MUHAMMAD K, et al. Synthesis of LiNi0.8Co0.15Al0.05O2 cathode material via flame-assisted spray pyrolysis method[J]. Advanced Powder Technology, 2020, 31(4): 1674-1681. |
58 | HU Guorong, LIU Wanmin, PENG Zhongdong, et al. Synthesis and electrochemical properties of LiNi0.8Co0.15Al0.05O2 prepared from the precursor Ni0.8Co0.15Al0.05OOH[J]. Journal of Power Sources, 2012, 198: 258-263. |
59 | FANG Kaibin, XIE Qian, WANG Chengyun, et al. Understanding the feasibility of manganese substitution for cobalt in the synthesis of nickel-rich and cobalt-free cathode materials[J]. ACS Applied Energy Materials, 2021, 4(7): 7190-7200. |
60 | ZHANG Jianan, MULDOON V L, DENG Sili. Effects of the preheating temperature on flame-assisted spray pyrolysis of nickel-rich cathode materials[J]. Proceedings of the Combustion Institute, 2023, 39(1): 1165-1173. |
61 | ZHA Guojun, OUYANG Chuying, YIN Shungao, et al. High cycling stability of the LiNi0.8Co0.1Mn0.1O2 cathode via surface modification with polyimide/multi-walled carbon nanotubes composite coating[J]. Small, 2021, 17: 1-8. |
62 | Seong-Ju SIM, LEE Seung-Hwan, JIN Bong-Soo, et al. Use of carbon coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced performances of lithium-ion batteries[J]. Scientific Reports, 2020, 10: 11114. |
63 | YAN Chao, YANG Xiaofang, ZHAO Hao, et al. Controlled Dy-doping to nickel-rich cathode materials in high temperature aerosol synthesis[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6623-6630. |
64 | LEE Taewon, CHO Kihyun, Jangwon OH, et al. Fabrication of LiCoO2 cathode powder for thin film battery by aerosol flame deposition[J]. Journal of Power Sources, 2007, 174(2): 394-399. |
65 | WANG Yang, ROLLER J, MARIC R. Morphology-controlled one-step synthesis of nanostructured LiNi1/3Mn1/3Co1/3O2 electrodes for Li-ion batteries[J]. ACS Omega, 2018, 3(4): 3966-3973. |
[1] | YU Songmin, JIN Hongbo, YANG Minghu, YU Haifeng, JIANG Hao. Synthesis and modification of F-doped olivine LiFe0.5Mn0.5PO4 cathode materials for Li-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 302-309. |
[2] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[3] | WANG Hao, HUO Jinda, QU Guorui, YANG Jiaqi, ZHOU Shiwei, LI Bo, WEI Yonggang. Research progress of positive electrode material recycling technology for retired lithium batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716. |
[4] | LI Long, XING Baolin, BAO Ti'ao, JIN Peng, ZENG Huihui, GUO Hui, ZHANG Yue, ZHANG Wenhao. Effect of mildly-expanded modification on coal-based graphite microstructure and lithium storage performance [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6259-6269. |
[5] | TIAN Xiaolu, YI Yikun, HAI Feng, WU Zhendi, ZHENG Shentuo, GUO Jingyu, LI Mingtao. Research progress in shear-thickening electrolytes for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5786-5800. |
[6] | MA Wenjie, YAO Weitang. Application of covalent organic frameworks ( COFs ) in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352. |
[7] | LONG Yinying, YANG Jian, GUAN Min, YANG Yiluo, CHENG Zhengbai, CAO Haibing, LIU Hongbin, AN Xingye. Research progress of lignin-based materials in electrode materials for hybrid supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4855-4865. |
[8] | DUAN Manhua, CHENG Dan, XIAO Wei, YANG Zhanxu. Preparation and performance of polyacrylonitrile/polyester nowoven microporous composite separator for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2615-2622. |
[9] | GONG Xin, LIU Xiaodong, WEN Fushan, SHI Nan, LIU Dong. Preparation and electrochemical performance of mesocarbon microbeads derived from emulsion-polymerization method [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2379-2388. |
[10] | WANG Yilin, LI Shijie. Effect of hydrochloric acid pretreatment on the electrochemical properties of enteromorpha-based activated carbon [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6454-6460. |
[11] | QIU Zhiwen, WU Aimin, WANG Jie, HUANG Hao. Research progress of Si-based anode materials for Li-ion battery [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 253-269. |
[12] | ZOU Wenhong, FAN You, ZHANG Yanyan, BAI Zhengshuai, TANG Yuxin. Research progress on room-temperature polymer-based electrolytes for safe solid-state lithium batteries [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5029-5044. |
[13] | YU Minghao, GU Mengxuan, WU Zhengying, SUN Linbing. Advances in the synthesis and application of manganese oxides as anode materials for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5012-5028. |
[14] | ZHU Sheng, PENG Yiting, MIN Yulin, LIU Haimei, XU Qunjie. Research progress on materials and technologies for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4837-4852. |
[15] | CHEN Meng, LI Jingjing. Experiment on heat dissipation performance of electric vehicle lithium battery based on pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3163-3171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |