Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 253-269.DOI: 10.16085/j.issn.1000-6613.2020-1263
• Materials science and technology • Previous Articles Next Articles
QIU Zhiwen(), WU Aimin(), WANG Jie, HUANG Hao
Received:
2020-07-06
Revised:
2020-11-11
Online:
2021-11-09
Published:
2021-10-25
Contact:
WU Aimin
通讯作者:
吴爱民
作者简介:
邱治文(1991—),男,博士研究生,研究方向为锂离子电池硅负极材料改性。E-mail: 基金资助:
CLC Number:
QIU Zhiwen, WU Aimin, WANG Jie, HUANG Hao. Research progress of Si-based anode materials for Li-ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 253-269.
邱治文, 吴爱民, 王杰, 黄昊. Si基锂离子电池负极材料研究进展[J]. 化工进展, 2021, 40(S1): 253-269.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1263
1 | SHEN Xiaohui, TIAN Zhanyuan, FAN Ruijuan, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. Journal of Energy Chemistry, 2018, 27(4): 1067-1090. |
2 | THACKERAY Michael M, WOLVERTON Christopher, ISAACS Eric D. Electrical energy storage for transportation approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863. |
3 | XU Xiangyang. Development of transmission technology for energy-saving vehicles and new energy resource vehicle[J]. Journal of Automotive Safety and Energy, 2017(4): 1. |
4 | MAZIAR Ashuri, HE Qianran, SHAW Leon L. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter[J]. Nanoscale, 2016, 8(1): 74-103. |
5 | CHOI W J, REDDYPRAKASH M, LOKA Chadrasekhar, et al. Carbon coated Si-metal silicide composite anode materials prepared by high-energy milling and carburization for Li-ion rechargeable batteries[J]. Journal of the Electrochemical Society, 2019, 166(3): A5131-A5138. |
6 | LIU H K, GUO Z P, WANG J Z, et al. Si-based anode materials for lithium rechargeable batteries[J]. Journal of Materials Chemistry, 2010, 20(45): 10055-10057. |
7 | LIU Nian, WU Hui, MCDOWELL Matthew T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6): 3315-3321. |
8 | SU Xin, WU Qingliu, LI Juchuan, et al. Silicon-based nanomaterials for lithium-ion batteries: a review[J]. Advanced Energy Materials, 2014, 4(1): 1300882. |
9 | LIU Lehao, Jing LYU, LI Tiehu, et al. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes[J]. Nanoscale, 2016, 8(2): 701-722. |
10 | WU Hui, CUI Yi. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429. |
11 | LIU Xiaohua, ZHONG Li, HUANG Shan, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531. |
12 | WANG Dingsheng, GAO Mingxia, PAN Hongge, et al. High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization[J]. Journal of Power Sources, 2014, 256: 190-199. |
13 | TERRANOVA Maria Letizia, ORLANDUCCI Silvia, TAMBURRI Emanuela, et al. Si/C hybrid nanostructures for Li-ion anodes: an overview[J]. Journal of Power Sources, 2014, 246: 167-177. |
14 | SAINT Juliette, MORCRETTE Mathieu, LARCHER Dominique, et al. Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites[J]. Advanced Functional Materials, 2007, 17(11): 1765-1774. |
15 | WANG Chao, LUO Fei, LU Hao, et al. A well-defined silicon nanocone-carbon structure for demonstrating exclusive influences of carbon coating on silicon anode of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2806-2814. |
16 | HWANG S M, LEE H Y, JANG S W, et al. Lithium insertion in SiAg powders produced by mechanical alloying[J]. Electrochemical and Solid-State Letters, 2001, 4(7): A97-A100. |
17 | ROBERTS G A, CAIRNS E J, REIMER J A. Magnesium silicide as a negative electrode material for lithium-ion batteries[J]. Journal of Power Sources, 2002, 110(2): 424-429. |
18 | WOLFENSTINE J. CaSi2 as an anode for lithium-ion batteries[J]. Journal of Power Sources, 2003, 124(1): 241-245. |
19 | YANG Jianping, WANG Yunxiao, LI Wei, et al. Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage[J]. Advanced Materials, 2017, 29(48): 1700523. |
20 | TEKI Ranganath, DATTA Moni K, KRISHNAN Rahul, et al. Nanostructured silicon anodes for lithium ion rechargeable batteries[J]. Small, 2010, 5(20):2236-2242. |
21 | LIMTHONGKUL P, JANG Y I, DUDNEY N J, et al. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage[J]. Acta Materialia, 2003, 51(4): 1103-1113. |
22 | LI J, DAHN J R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si[J]. Journal of the Electrochemical Society, 2007, 154(3): A156-A161. |
23 | LIU Xiaohua, WANG Jiangwei, HUANG Shan, et al. In situ atomic-scale imaging of electrochemical lithiation in silicon[J]. Nature Nanotechnology, 2012, 7(11): 749-756. |
24 | CHAN Maria K Y, WOLVERTON C, GREELEY Jeffrey P. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon[J]. Journal of the American Chemical Society, 2012, 134(35): 14362-14374. |
25 | LEE S W, MVDOWELL M T, CHOI J W, et al. Anomalous shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Letters, 2011, 11(7): 3034-3039. |
26 | KIM S P, DATTA D, SHENOY V B. Atomistic mechanisms of phase boundary evolution during initial lithiation of crystalline silicon[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17247-17253. |
27 | JOHARI Priya, QI Yue, SHENOY Vivek B. The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study[J]. Nano letters, 2011, 11(12): 5494-5500. |
28 | CUBUK Ekin D, KAXIRAS Efthimios. Theory of structural transformation in lithiated amorphous silicon[J]. Nano Letters, 2014, 14(7): 4065-4070. |
29 | CHEN Gen, YAN Litao, LUO Hongmei, et al. Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage[J]. Advanced Materials, 2016, 28(35): 7580-7602. |
30 | WOODFORD William Henry, CHIANG Y M, Craig CARTER W. “Electrochemical shock” of intercalation electrodes: a fracture mechanics analysis[J]. Journal of the Electrochemical Society, 2010, 157(10): A1052-A1059. |
31 | ZHAO Kejie, PHARR Matt, VLASSAK Joost J, et al. Inelastic hosts as electrodes for high-capacity lithium-ion batteries[J]. Journal of Applied Physics, 2011, 109(1): 016110. |
32 | GRAETZ J, AHN C C, YAZAMI R, et al. Highly reversible lithium storage in nanostructured silicon[J]. Electrochemical and Solid-State Letters, 2003, 6(9): A194-A197. |
33 | GAUTHIER Magali, MAZOUZI Driss, REYTER David, et al. A low-cost and high-performance ball-milled Si-based negative electrode for high-energy Li-ion batteries[J]. Energy & Environmental Science, 2013, 6(7): 2145-2155. |
34 | ZHU Bin, JIN Yan, TAN Yingling, et al. Scalable production of Si nanoparticles directly from low grade sources for lithium-ion battery anode[J]. Nano Letters, 2015, 15(9): 5750-5754. |
35 | NGUYEN Hung T, YAO Fei, ZAMFIR Mihai R, et al. Highly interconnected Si nanowires for improved stability Li-ion battery anodes[J]. Advanced Energy Materials, 2011, 1(6): 1154-1161. |
36 | LAIK Barbara, EUDE Laurent, Jean-Pierre PEREIRA-RAMOS, et al. Silicon nanowires as negative electrode for lithium-ion microbatteries[J]. Electrochimica Acta, 2008, 53(17): 5528-5532. |
37 | ZHOU G W, LI H, SUN H P, et al. Controlled Li doping of Si nanowires by electrochemical insertion method[J]. Applied Physics Letters, 1999, 75(16): 2447-2449. |
38 | YU Jieyi, GAO Jian, XUE Fanghong, et al. Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-discharge[J]. RSC Advances, 2015, 5(84): 68714-68721. |
39 | LIU Xiaohua, ZHENG He, ZHONG Li, et al. Anisotropic swelling and fracture of silicon nanowires during lithiation[J]. Nano Letters, 2011, 11(8): 3312-3318. |
40 | LIU Xiaohua, FAN Feifei, YANG Hui, et al. Self-limiting lithiation in silicon nanowires[J]. Acs Nano, 2013, 7(2): 1495-1503. |
41 | MOON Taeho, KIM Chunjoong, PARK Byungwoo. Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries[J]. Journal of Power Sources, 2006, 155(2): 391-394. |
42 | CHEN L B, XIE J Y, YU H C, et al. Si-Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries[J]. Electrochimica Acta, 2008, 53(28): 8149-8153. |
43 | CHEN L B, XIE J Y, YU H C, et al. An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries[J]. Journal of Applied Electrochemistry, 2009, 39(8): 1157-1162. |
44 | ZHAO Guangyu, MENG Yufeng, ZHANG Naiqing, et al. Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes[J]. Materials Letters, 2012, 76: 55-58. |
45 | LIU Ping, ZHENG Junjun, QIAO Yongmin, et al. Fabrication and characterization of porous Si-Al films anode with different macroporous substrates for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2014, 18(7): 1799-1806. |
46 | CHIU K F, SU S H, LEU H J, et al. Silicon thin film anodes coated on micron carbon-fiber current collectors for lithium ion batteries[J]. Surface and Coatings Technology, 2015, 267: 70-74. |
47 | CUI L F, HU L B, CHOI J W, et al. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries[J]. ACS Nano, 2010, 4(7): 3671-3678. |
48 | ZHANG Ye, FU Zhengwen, QIN Qizong. Microstructure and Li alloy formation of nano-structured amorphous Si and Si/TiN composite thin film electrodes[J]. Electrochemistry Communications, 2004, 6(5): 484-491. |
49 | KIM J B, LEE H Y, LEE K S, et al. Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries[J]. Electrochemistry Communications, 2003, 5(7): 544-548. |
50 | CHO Jaephil. Porous Si anode materials for lithium rechargeable batteries[J]. Journal of Materials Chemistry, 2010, 20(20): 4009-4014. |
51 | LIU Yumin, CHEN Bolei, CAO Feng, et al. One-pot synthesis of three-dimensional silver-embedded porous silicon micronparticles for lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(43): 17083-17086. |
52 | BANG B M, KIM H J, SONG H K, et al. Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching[J]. Energy & Environmental Science, 2011, 4(12): 5013-5019. |
53 | BANG B M, LEE J I, KIM H J, et al. High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching[J]. Advanced Energy Materials, 2012, 2(7): 878-883. |
54 | JIANG Zhiyu, LI Chunli, HAO Shiji, et al. An easy way for preparing high performance porous silicon powder by acid etching Al—Si alloy powder for lithium ion battery[J]. Electrochimica Acta, 2014, 115: 393-398. |
55 | LI Chunli, ZHANG Ping, JIANG Zhiyu. Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder[J]. Electrochimica Acta, 2015, 161: 408-412. |
56 | HOHL A, WIEDER T, VAN A P A, et al. An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO)[J]. Journal of Non-Crystalline Solids, 2003, 320(1/2/3): 255-280. |
57 | CHOI I, LEE M J, OH S M, et al. Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: dynamics and component analysis by TEM[J]. Electrochimica Acta, 2012, 85: 369-376. |
58 | WANG Junyang, WANG Xuelong, LIU Bonan, et al. Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode[J]. Nano Energy, 2020, 75: 105101. |
59 | PARK E, PARK M S, LEE J, et al. A highly resilient mesoporous SiOx lithium storage material engineered by oil-water templating[J]. ChemSusChem, 2015, 8(4): 688-694. |
60 | Soojin SIM, Pilgun OH, PARK Soojin, et al. Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries[J]. Advanced Materials, 2013, 25(32): 4498-4503. |
61 | XU Quan, SUN Jiankun, YIN Yaxia, et al. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes[J]. Advanced Functional Materials, 2018, 28(8):1705235.1-1705235.7. |
62 | ZHANG Xinghao, WANG Denghui, QIU Xiongying, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation[J]. Nature Communications, 2020, 11(1):3826. |
63 | ZHANG Yu, GUO Guannan, CHEN Chen, et al. An affordable manufacturing method to boost the initial Coulombic efficiency of disproportionated SiO lithium-ion battery anodes[J]. Journal of Power Sources, 2019, 426:116-123. |
64 | HE Wei, TIAN Huajun, XIN Fengxia, et al. Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high-performance anode for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(35): 17956-17962. |
65 | SI Q, HANAI K, IMANISHI N, et al. Highly reversible carbon-nano-silicon composite anodes for lithium rechargeable batteries[J]. Journal of Power Sources, 2009, 189(1): 761-765. |
66 | Minseong KO, CHAE Sujong, MA Jiyoung, et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nature Energy, 2016, 1(9): 1-8. |
67 | LEE Jeong K, SMITH Kurt B, HAYNER Cary M, et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes[J]. Chemical Communications, 2010, 46(12): 2025-2027. |
68 | ZHOU Xiaosi, YIN Yaxia, WAN Lijun, et al. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries[J]. Chemical Communications, 2012, 48(16): 2198-2200. |
69 | LUO Jiayan, ZHAO Xin, WU Jinsong, et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes[J]. The Journal of Physical Chemistry Letters, 2012, 3(13): 1824-1829. |
70 | YANG Shengnan, LI Guorui, ZHU Qing, et al. Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode[J]. Journal of Materials Chemistry, 2012, 22(8): 3420-3425. |
71 | ZHAO Guangyu, ZHANG Li, MENG Yufeng, et al. Decoration of graphene with silicon nanoparticles by covalent immobilization for use as anodes in high stability lithium ion batteries[J]. Journal of Power Sources, 2013, 240: 212-218. |
72 | WEN Yang, ZHU Yujie, LANGROCK Alex, et al. Graphene-bonded and encapsulated Si nanoparticles for lithium ion battery anodes[J]. Small, 2013, 9(16): 2810-2816. |
73 | ZHOU Xiaosi, YIN Yaxia, WAN Lijun, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(9): 1086-1090. |
74 | ZHAO Xin, HAYNER Cary M, KUNG Mayfair C, et al. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries[J]. Advanced Energy Materials, 2011, 1(6): 1079-1084. |
75 | CHANG Jingbo, HUANG Xingkang, ZHOU Guihua, et al. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode[J]. Advanced Materials, 2014, 26(5): 758-764. |
76 | LI Bin, YANG Shubin, LI Songmei, et al. From commercial sponge toward 3D graphene-silicon networks for superior lithium storage[J]. Advanced Energy Materials, 2015, 5(15): 1500289. |
77 | CHEN Shuangqiang, BAO Peite, HUANG Xiaodan, et al. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance[J]. Nano Research, 2014, 7(1): 85-94. |
78 | WANG Bin, LI Xianglong, LUO Bin, et al. Approaching the downsizing limit of silicon for surface-controlled lithium storage[J]. Advanced Materials, 2015, 27(9): 1526-1532. |
79 | LI Na, JIN Shuaixing, LIAO Qingyu, et al. Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes[J]. Nano Energy, 2014, 5: 105-115. |
80 | ZHOU Min, LI Xianglong, WANG Bin, et al. High-performance silicon battery anodes enabled by engineering graphene assemblies[J]. Nano Letters, 2015, 15(9): 6222-6228. |
81 | DU Feihu, WANG Kaixue, CHEN Jiesheng. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials[J]. Journal of Materials Chemistry A, 2016, 4(1): 32-50. |
82 | WANG Wei, KUMTA Prashant N. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes[J]. ACS Nano, 2010, 4(4): 2233-2241. |
83 | HERTZBERG Benjamin, ALEXEEV Alexander, YUSHIN Gleb. Deformations in Si—Li anodes upon electrochemical alloying in nano-confined space[J]. Journal of the American Chemical Society, 2010, 132(25): 8548-8549. |
84 | YU Wanjing, LIU Chang, HOU Pengxiang, et al. Lithiation of silicon nanoparticles confined in carbon nanotubes[J]. ACS Nano,2015, 9(5): 5063-5071. |
85 | LIN Huijuan, WENG Wei, QIU Longbin, et al. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery[J]. Advanced Materials, 2014, 26(8): 1217-1222. |
86 | XIAO Qizhen, FAN Yu, WANG Xinghui, et al. A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity[J]. Energy & Environmental Science, 2014,7 (2): 655-661. |
87 | ZHANG Tao, FU Lijun, GAO Jie, et al. Core-shell Si/C nanocomposite as anode material for lithium ion batteries[J]. Pure and Applied Chemistry, 2006, 78(10): 1889-1896. |
88 | NG S H, WANG J Z, WEXLER D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2006, 45(41): 6896-6899. |
89 | JUNG Yoon Seok, LEE Kyu T, Seung M OH. Si-carbon core-shell composite anode in lithium secondary batteries[J]. Electrochimica Acta, 2007, 52(24): 7061-7067. |
90 | HOU Guolin, CHENG Benlin, CAO Yuebin, et al. Scalable synthesis of highly dispersed silicon nanospheres by RF thermal plasma and their use as anode materials for high-performance Li-ion batteries[J]. Journal of Materials Chemistry, 2015, A 3 (35): 18136-18145. |
91 | LI Peng, ZHAO Guoqiang, ZHENG Xiaobo, et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications[J]. Energy Storage Materials, 2018, 15: 422-446. |
92 | ZHU Jinhui, YANG Jun, XU Zhixin, et al. Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries[J]. Nanoscale, 2017, 9 (25): 8871-8878. |
93 | LUO Wei, WANG Yunxiao, CHOU Shulei, et al. Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes[J]. Nano Energy, 2016, 27: 255-264. |
94 | LIU Nian, LU Zhenda, ZHAO Jie, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014 9 (3): 187. |
95 | KONG Xiangzhong, ZHENG Yuchao, WANG Yaping, et al. Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries[J]. Science Bulletin, 2019, 64 (4): 261-269. |
96 | MURUGESAN S, HARRIS J T, KORGEL B A, et al. Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries[J]. Chemistry of Materials, 2012, 24(7):1306-1315. |
97 | SONG Huchen, WANG Hongxiang, LIN Zixia, et al. Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2016, 26(4): 524-531. |
98 | HUANG Xingkang, PU Haihui, CHANG Jingbo, et al. Improved cyclic performance of Si anodes for lithium-ion batteries by forming intermetallic interphases between Si nanoparticles and metal microparticles[J]. ACS Applied Materials & Interfaces, 2013, 5(22): 11965-11970. |
99 | ZHOU Sa, LIU Xiaohua, WANG Dunwei. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries[J]. Nano Letters, 2010, 10(3): 860-863. |
100 | KENNEDY Tadhg, BEZUIDENHOUT Michael, PANLANIAPPAN Kumaranand, et al. Nanowire heterostructures comprising germanium stems and silicon branches as high-capacity Li-ion anodes with tunable rate capability[J]. ACS Nano, 2015 9(7): 7456-7465. |
101 | LOKA C, YU H T, LEE K S, et al. Nanocomposite Si/(NiTi) anode materials synthesized by high-energy mechanical milling for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2013, 244: 259-265. |
102 | HAN Hyoung Kyu, LOKA Chadrasekhar, YANG Yun Mo, et al. High capacity retention Si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2015, 281: 293-300. |
103 | KIM Sang Hyung, LEE Dae Hee, PARK Cheolho, et al. Nanocrystalline silicon embedded in an alloy matrix as an anode material for high energy density lithium-ion batteries[J]. Journal of Power Sources, 2018, 395: 328-335. |
104 | USUI Hiroyuki, NOUNO Kazuma, TAKEMOYO Yuya, et al. Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites[J]. Journal of Power Sources, 2014, 268: 848-852. |
105 | GUO Z P, ZHAO Z W, LIU H K, et al. Lithium insertion in Si-TiC nanocomposite materials produced by high-energy mechanical milling[J]. Journal of Power Sources, 2005, 146(1/2): 190-194. |
106 | CHEW S Y, GUO Z P, WANG J Z, et al. Novel nano-silicon/polypyrrole composites for lithium storage[J]. Electrochemistry Communications, 2007, 9(5): 941-946. |
107 | WU Hui, YU Guihua, PAN Lijia, et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nature Communications, 2013, 4(1): 1-6. |
108 | YAO Yan, LIU Man, MCDOWELL Matthew T, et al. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings[J]. Energy & Environmental Science, 2012 5(7): 7927-7930. |
109 | YUE Lu, WANG Suqing, ZHAO Xinyue, et al. Nano-silicon composites using poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode[J]. Journal of Materials Chemistry, 2012, 22(3): 1094-1099. |
110 | LIU Borui, SOARES Paulo, CHECKLES Constantine, et al. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes[J]. Nano Letters, 2013, 13(7): 3414-3419. |
111 | LIN Hengyi, LI ChengHung, WANG Diyan, et al. Chemical doping of a core-shell silicon nanoparticles@polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode[J]. Nanoscale, 2016, 8(3): 1280-1287. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[5] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[6] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[7] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[8] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[9] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[10] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[11] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[12] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[13] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[14] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[15] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |