Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3163-3171.DOI: 10.16085/j.issn.1000-6613.2020-1400
• Energy processes and technology • Previous Articles Next Articles
Received:
2020-07-20
Revised:
2020-09-08
Online:
2021-06-22
Published:
2021-06-06
Contact:
CHEN Meng
通讯作者:
陈萌
作者简介:
陈萌(1979—),男,博士,副教授,硕士生导师,研究方向为锂动力电池。E-mail:基金资助:
CLC Number:
CHEN Meng, LI Jingjing. Experiment on heat dissipation performance of electric vehicle lithium battery based on pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3163-3171.
陈萌, 李静静. 脉动热管用于电动汽车锂电池散热性能试验[J]. 化工进展, 2021, 40(6): 3163-3171.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1400
1 | GAO D W, MI C. Modeling and simulation of electric and hybrid vehicles[J]. Proceedings of the IEEE, 2007, 95(4): 729-745. |
2 | HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854. |
3 | CARROTT M J, WALLER B E, WAI C M, et al. High solubility of UO2(NO3)2·2TBP complex in supercritical CO2[J]. Chemical Communications, 1998(3): 373-374. |
4 | WEINERT J X, BURKE A F, WEI X Z. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement[J]. Journal of Power Sources, 2007, 172(2): 938-945. |
5 | KITAGAWA Y, KATO K, FUKUI M. Analysis and experimentation for effective cooling of li-ion batteries[J]. Procedia Technology, 2014, 18: 63-67. |
6 | WANG T, TSENG K J, ZHAO J Y, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied Energy, 2014, 134: 229-238. |
7 | SUN H G, DIXON R. Development of cooling strategy for an air cooled lithium-ion battery pack[J]. Journal of Power Sources, 2014, 272: 404-414. |
8 | TONG W, SOMASUNDARAM K, BIRGERSSON E, et al. Numerical investigation of water cooling for a lithium-ion bipolar battery pack[J]. International Journal of Thermal Sciences, 2015, 94: 259-269. |
9 | LAN C J, XU J, QIAO Y, et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes[J]. Applied Thermal Engineering, 2016, 101: 284-292. |
10 | PANCHAL S, KHASOW R, DINCER I, et al. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery[J]. Applied Thermal Engineering, 2017, 122: 80-90. |
11 | KIZILEL R, LATEEF A, SABBAH R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of Power Sources, 2008, 183(1): 370-375. |
12 | DUAN X, NATERER G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5176-5182. |
13 | RAO Z H, WANG S F, ZHANG G Q. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery[J]. Energy Conversion & Management, 2011, 52(12): 3408-3414. |
14 | PUTRA N, ARIANTARA B, PAMUNGKAS R A. Experimental investigation on performance of lithium-ion battery thermal- management system using flat plate loop heat pipe for electric vehicle application[J]. Applied Thermal Engineering, 2016, 99: 784-789. |
15 | LIU F F, LAN F C, CHEN J Q. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling[J]. Journal of Power Sources, 2016, 321: 57-70. |
16 | ZOU H M, WANG W, ZHANG G Y, et al. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle[J]. Energy conversion and management, 2016, 118: 88-95. |
17 | XU X M, HE R. Research on the heat dissipation performance of battery pack based on forced air cooling[J]. Journal of Power Sources, 2013, 240: 33-41. |
18 | CHEN K W, LI X G. Accurate determination of battery discharge characteristics—A comparison between two battery temperature control methods[J]. Journal of Power Sources, 2014, 247: 961-966. |
19 | LING Z Y, CHEN J J, FANG X M, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy, 2014, 121: 104-113. |
20 | SAMIMI F, BABAPOOR A, AZIZI M, et al. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers[J]. Energy, 2016, 96(1): 355-371. |
21 | NAZARI M A, AHMADI M H, SADEGHZADEH M, et al. A review on application of nanofluid in various types of heat pipes[J]. Journal of Central South University, 2019, 26 (5): 1021-1041. |
22 | 翟玉玲, 王江, 李龙, 等. 粒径混合比对Al2O3/水纳米流体传热性能影响及评价[J].化工进展, 2019, 38(11): 4865-4872. |
ZHAI Y L, WANG J, LI L, et al. Evaluation and effect of mixture ratio on heat transfer performance of Al2O3/water nanofluids[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4865-4872. | |
23 | 孙斌, 董爽, 杨迪, 等. 多壁碳纳米管-水/乙二醇纳米流体在汽车散热器中的传热特性[J]. 化工进展, 2019, 38(3): 1207-1217. |
SUN B, DONG S, YANG D, et al. Heat transfer characteristics of MWCNT-water/ethylene glycol nanofluid flow in automotive radiator[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1207-1217. | |
24 | 王宇, 李惟毅. 加热工况及倾斜角影响单环路脉动热管稳定运行的实验研究[J]. 中国电机工程学报, 2011, 31(11): 62-67. |
WANG Y, LI W Y. Experimental investigations on the influence of heating condition and inclination angle on stable operation of a single loop pulsating heat pipe[J]. Proceedings of the CSEE,2011, 31(11): 62-67. | |
25 | MUKHERJEE S, CHAKRABARTY S, MISHRA P C, et al. Transient heat transfer characteristics and process intensification with Al2O3-water and TiO2-water nanofluids: an experimental investigation[J]. Chemical Engineering and Processing, 2020, 150: 107887-1017896. |
26 | HE Y R, JIN Y, CHEN H S, et al. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50(11/12): 2272-2281. |
27 | TURGUT A, TAVMAN I, CHIRTOC M, et al. Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids[J]. International Journal of Thermophysics, 2009, 30(4): 1213-1226. |
28 | DUANGTHONGSUK W, WONGWISES S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids[J]. Experimental Thermal and Fluid Science, 2009, 33(4): 706-714. |
29 | KARTHIKEYAN V K, RAMACHANDRAN K, PILLAI B C, et al. Effect of nanofluids on thermal performance of closed loop pulsating heat pipe[J]. Experimental Thermal and Fluid Science, 2014, 54: 171-178. |
30 | QU J, WANG C, LI X J, et al. Heat transfer performance of flexible oscillating heat pipes for electric/hybrid-electric vehicle battery thermal management[J]. Applied Thermal Engineering, 2018, 135: 1-9. |
31 | AKILU S, BAHETA A T, SHARMA K V. Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions[J]. Journal of Molecular Liquids, 2017, 246: 396-405. |
32 | SARBOLOOKZADED H S, KARIMIPOUR A, AFRAND M, et al. An experimental study on thermal conductivity of F-MWCNTs-Fe3O4/EG hybrid nanofluid effects of temperature and concentration[J]. International Communications in Heat and Mass Transfer, 2016,76: 171-177. |
33 | SATO N, YAGI K. Thermal behavior analysis of nickel metal hydride batteries for electric vehicles[J]. JSAE Review, 2000, 21(2): 205-211. |
34 | JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: a comprehensive numerical study[J]. Applied Energy, 2019, 242: 378-392. |
35 | GHALKHANI M, BAHIRAEI F, NAZRI G A, et al. Electrochemical-thermal model of pouch-type lithium-ion batteries[J]. Electrochimica Acta, 2017 (247): 569-587. |
36 | RAO Z H, HUO Y T, LIU X J. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery[J]. Experimental Thermal and Fluid Science, 2014, 57: 20-26. |
37 | KEBLINSKI P, PHILLPOT S R, CHOI S U S, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J]. International Journal of Heat and Mass Transfer, 2002, 45(4): 855-863. |
38 | TENG T P, HUNG Y H, TENG T C, et al. The effect of alumina/water nanofluid particle size on thermal conductivity[J]. Applied Thermal Engineering, 2010, 30(14/15): 2213-2218. |
39 | NABIL M F, AZMI W H, HAMID K A, et al. Experimental investigation of heat transfer and friction factor of TiO2-SiO2 nanofluids in water /ethylene glycol mixture[J]. International Journal of Heat and Mass Transfer, 2018, 124: 1361-1369. |
[1] | HUI Bo, HOU Hongyi, ZHANG Tao, CHE Shengwen. Drying characteristics of cylindrical annular pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 33-40. |
[2] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[3] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[4] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[5] | SHI Yu, ZHAO Yunchao, FAN Zhixuan, JIANG Dahua. Experimental study on the optimum phase change temperature of phase change roofs in hot summer and cold winter areas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4828-4836. |
[6] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[7] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[8] | ZHAO Jian, ZHUO Zewen, DONG Hang, GAO Wenjian. A new method for observation of microstructure of waxy crude oil and its emulsion system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4372-4384. |
[9] | ZHANG Xuewei, HUANG Yaji, XU Yueyang, CHENG Haoqiang, ZHU Zhicheng, LI Jinlei, DING Xueyu, WANG Sheng, ZHANG Rongchu. Adsorption characteristics of SO3 from coal flue gas by alkaline adsorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3855-3864. |
[10] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[11] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[12] | XU Xian, CUI Louwei, LIU Jie, SHI Junhe, ZHU Yonghong, LIU Jiaojiao, LIU Tao, ZHENG Hua’an, LI Dong. Effect of raw material composition on the development of semicoke mesophase structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2343-2352. |
[13] | DAI Hang, GAO Ruixue, LI Yiguo, ZHU Jin, WANG Jinggang. Research progress on the synthesis of excellent impact and transparency polyesters with high glass transition temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2555-2565. |
[14] | ZHOU Yafeng, YANG Jiang, MA Cheng, LIU Hailing. Preparation and properties of heat resistant emulsion thickener for fracturing [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2647-2654. |
[15] | WANG Hao, HUO Jinda, QU Guorui, YANG Jiaqi, ZHOU Shiwei, LI Bo, WEI Yonggang. Research progress of positive electrode material recycling technology for retired lithium batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |