Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 4824-4832.DOI: 10.16085/j.issn.1000-6613.2023-1410
• Chemical processes and equipment • Previous Articles
CUI Yi1(), LI Mengyuan1, YANG Lu2, LI Haidong2, ZHANG Qiqi2, CHANG Chenglin2,3(
), WANG Yufei1
Received:
2023-08-13
Revised:
2023-10-16
Online:
2024-09-30
Published:
2024-09-15
Contact:
CHANG Chenglin
崔祎1(), 李孟原1, 杨路2, 李海东2, 张奇琪2, 常承林2,3(
), 王彧斐1
通讯作者:
常承林
作者简介:
崔祎(1999—),男,博士研究生,研究方向为过程系统工程。E-mail:cuiyi0227@foxmail.com。
基金资助:
CLC Number:
CUI Yi, LI Mengyuan, YANG Lu, LI Haidong, ZHANG Qiqi, CHANG Chenglin, WANG Yufei. New method for automatic design of intensified shell and tube heat exchanger with twisted-tape insert[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4824-4832.
崔祎, 李孟原, 杨路, 李海东, 张奇琪, 常承林, 王彧斐. 采用扭曲片内插件的管壳式换热器自动设计新方法[J]. 化工进展, 2024, 43(9): 4824-4832.
变量 | 取值 |
---|---|
管外径/m | 0.019,0.025,0.032,0.038,0.051 |
管长/m | 1.220,1.829,2.439,3.049,3.659,4.877,6.098 |
间径比 | 1.25,1.33,1.50 |
管束布局方式 | 1表示正方形布局,2表示三角形布局 |
管程 | 1,2,4,6 |
挡板数 | 1,2,3,…,20 |
壳程直径/m | 0.787,0.838,0.889,0.940,0.991,1.067,1.143,1.219,1.372,1.524 |
扭曲片节距/m | 0.074700,0.103275,0.131850 |
扭曲片厚/m | 0.002,0.003,0.004 |
变量 | 取值 |
---|---|
管外径/m | 0.019,0.025,0.032,0.038,0.051 |
管长/m | 1.220,1.829,2.439,3.049,3.659,4.877,6.098 |
间径比 | 1.25,1.33,1.50 |
管束布局方式 | 1表示正方形布局,2表示三角形布局 |
管程 | 1,2,4,6 |
挡板数 | 1,2,3,…,20 |
壳程直径/m | 0.787,0.838,0.889,0.940,0.991,1.067,1.143,1.219,1.372,1.524 |
扭曲片节距/m | 0.074700,0.103275,0.131850 |
扭曲片厚/m | 0.002,0.003,0.004 |
物流 | 质量流量 /kg·s-1 | 进口温度 /℃ | 出口温度 /℃ | 污垢系数 /m2·K·W-1 | 密度 /kg·m-3 | 比热容 /J·kg-1·K-1 | 黏度 /Pa·s | 热导率 /W·m-1·K-1 | 允许压降 /Pa | 流速范围 /m·s-1 |
---|---|---|---|---|---|---|---|---|---|---|
热流乙醇 | 55.6 | 150 | 60 | 0.00020 | 789.0 | 2470.0 | 0.00067 | 0.170 | 100000 | [1.0,3.0] |
冷流冷却水 | 295.0 | 30 | 40 | 0.00040 | 995.0 | 4186.8 | 0.00080 | 0.590 | 100000 | [0.5,2.0] |
物流 | 质量流量 /kg·s-1 | 进口温度 /℃ | 出口温度 /℃ | 污垢系数 /m2·K·W-1 | 密度 /kg·m-3 | 比热容 /J·kg-1·K-1 | 黏度 /Pa·s | 热导率 /W·m-1·K-1 | 允许压降 /Pa | 流速范围 /m·s-1 |
---|---|---|---|---|---|---|---|---|---|---|
热流乙醇 | 55.6 | 150 | 60 | 0.00020 | 789.0 | 2470.0 | 0.00067 | 0.170 | 100000 | [1.0,3.0] |
冷流冷却水 | 295.0 | 30 | 40 | 0.00040 | 995.0 | 4186.8 | 0.00080 | 0.590 | 100000 | [0.5,2.0] |
设计参数 | ST | SS | ST-TI | SS-TI |
---|---|---|---|---|
管外径/m | 0.019 | 0.019 | 0.025 | 0.019 |
管长/m | 4.877 | 6.098 | 6.098 | 4.877 |
间径比 | 1.25 | 1.25 | 1.25 | 1.25 |
管束布局方式 | 正方形 | 正方形 | 正方形 | 三角形 |
管程 | 6 | 1 | 4 | 1 |
挡板数 | 4 | 15 | 6 | 11 |
壳程直径/m | 0.991 | 0.838 | 0.940 | 0.838 |
扭曲片节距/m | — | — | 0.074700 | 0.074700 |
扭曲片厚/ m | — | — | 0.004 | 0.002 |
设计参数 | ST | SS | ST-TI | SS-TI |
---|---|---|---|---|
管外径/m | 0.019 | 0.019 | 0.025 | 0.019 |
管长/m | 4.877 | 6.098 | 6.098 | 4.877 |
间径比 | 1.25 | 1.25 | 1.25 | 1.25 |
管束布局方式 | 正方形 | 正方形 | 正方形 | 三角形 |
管程 | 6 | 1 | 4 | 1 |
挡板数 | 4 | 15 | 6 | 11 |
壳程直径/m | 0.991 | 0.838 | 0.940 | 0.838 |
扭曲片节距/m | — | — | 0.074700 | 0.074700 |
扭曲片厚/ m | — | — | 0.004 | 0.002 |
优化结果 | ST | SS | ST-TI | SS-TI |
---|---|---|---|---|
换热面积/m2 | 337.4 | 329.4 | 288.3 | 304.2 |
管程流速/m·s-1 | 1.9 | 1.7 | 1.8 | 1.8 |
壳程流速/m·s-1 | 1.5 | 1.1 | 1.8 | 1.0 |
管程传热系数/W·m-2·K-1 | 2120.5 | 7138.4 | 3155.3 | 9636.7 |
壳程传热系数/W·m-2·K-1 | 6447.8 | 1800.3 | 6243.1 | 2003.9 |
总传热系数/W·m-2·K-1 | 712.2 | 691.9 | 839.6 | 743.5 |
管程压降/Pa | 84105.4 | 16419.2 | 98350.5 | 32628.5 |
壳程压降/Pa | 74199.6 | 88556.3 | 95056.2 | 86121.3 |
优化结果 | ST | SS | ST-TI | SS-TI |
---|---|---|---|---|
换热面积/m2 | 337.4 | 329.4 | 288.3 | 304.2 |
管程流速/m·s-1 | 1.9 | 1.7 | 1.8 | 1.8 |
壳程流速/m·s-1 | 1.5 | 1.1 | 1.8 | 1.0 |
管程传热系数/W·m-2·K-1 | 2120.5 | 7138.4 | 3155.3 | 9636.7 |
壳程传热系数/W·m-2·K-1 | 6447.8 | 1800.3 | 6243.1 | 2003.9 |
总传热系数/W·m-2·K-1 | 712.2 | 691.9 | 839.6 | 743.5 |
管程压降/Pa | 84105.4 | 16419.2 | 98350.5 | 32628.5 |
壳程压降/Pa | 74199.6 | 88556.3 | 95056.2 | 86121.3 |
设计参数 | ST | SS | ST-TI | SS-TI |
---|---|---|---|---|
管外径/ m | 0.019 | 0.019 | 0.019 | 0.025 |
管长/m | 4.877 | 4.877 | 4.877 | 4.877 |
间径比 | 1.5 | 1.25 | 1.5 | 1.25 |
管束布局方式 | 三角形 | 正方形 | 三角形 | 三角形 |
管程 | 6 | 1 | 4 | 1 |
挡板数 | 5 | 13 | 4 | 13 |
壳程直径/m | 1.143 | 0.94 | 1.067 | 0.991 |
扭曲片节距/m | — | — | 0.074700 | 0.074700 |
扭曲片厚/m | — | — | 0.002 | 0.002 |
设计参数 | ST | SS | ST-TI | SS-TI |
---|---|---|---|---|
管外径/ m | 0.019 | 0.019 | 0.019 | 0.025 |
管长/m | 4.877 | 4.877 | 4.877 | 4.877 |
间径比 | 1.5 | 1.25 | 1.5 | 1.25 |
管束布局方式 | 三角形 | 正方形 | 三角形 | 三角形 |
管程 | 6 | 1 | 4 | 1 |
挡板数 | 5 | 13 | 4 | 13 |
壳程直径/m | 1.143 | 0.94 | 1.067 | 0.991 |
扭曲片节距/m | — | — | 0.074700 | 0.074700 |
扭曲片厚/m | — | — | 0.002 | 0.002 |
优化结果 | ST | SS | ST-TI | SS-TI |
---|---|---|---|---|
年度总费用/USD·a-1 | 85439.0 | 73357.3 | 74255.8 | 72941.1 |
净现值/USD·a-1 | 323881.2 | 278081.9 | 281488.0 | 276504.0 |
换热面积/m2 | 359.8 | 331.6 | 313.5 | 323.3 |
管程流速/m·s-1 | 1.8 | 1.3 | 1.4 | 1.0 |
壳程流速/m·s-1 | 1.0 | 1.1 | 0.9 | 1.0 |
管程传热系数/W·m-2·K-1 | 2014.1 | 5938.9 | 3091.6 | 6400.8 |
壳程传热系数/W·m-2·K-1 | 4153.6 | 1775.7 | 3902.2 | 1758.0 |
总传热系数/W·m-2·K-1 | 657.9 | 672.4 | 754.2 | 692.0 |
管程压降/Pa | 74773.8 | 8830.7 | 91101.0 | 10110.9 |
壳程压降/Pa | 27144.4 | 83074.4 | 17190.4 | 83682.3 |
优化结果 | ST | SS | ST-TI | SS-TI |
---|---|---|---|---|
年度总费用/USD·a-1 | 85439.0 | 73357.3 | 74255.8 | 72941.1 |
净现值/USD·a-1 | 323881.2 | 278081.9 | 281488.0 | 276504.0 |
换热面积/m2 | 359.8 | 331.6 | 313.5 | 323.3 |
管程流速/m·s-1 | 1.8 | 1.3 | 1.4 | 1.0 |
壳程流速/m·s-1 | 1.0 | 1.1 | 0.9 | 1.0 |
管程传热系数/W·m-2·K-1 | 2014.1 | 5938.9 | 3091.6 | 6400.8 |
壳程传热系数/W·m-2·K-1 | 4153.6 | 1775.7 | 3902.2 | 1758.0 |
总传热系数/W·m-2·K-1 | 657.9 | 672.4 | 754.2 | 692.0 |
管程压降/Pa | 74773.8 | 8830.7 | 91101.0 | 10110.9 |
壳程压降/Pa | 27144.4 | 83074.4 | 17190.4 | 83682.3 |
换热情况 | 用时/s |
---|---|
ST | 0.216 |
SS | 0.204 |
ST-TI | 2.366 |
SS-TI | 2.264 |
SS-MILP | 2824 |
换热情况 | 用时/s |
---|---|
ST | 0.216 |
SS | 0.204 |
ST-TI | 2.366 |
SS-TI | 2.264 |
SS-MILP | 2824 |
1 | HE Yong, LIAO Nuo, LIN Kunrong. Can China’s industrial sector achieve energy conservation and emission reduction goals dominated by energy efficiency enhancement? A multi-objective optimization approach[J]. Energy Policy, 2021, 149: 112108. |
2 | 王晓东. 管壳式换热器传热的模拟研究及其优化分析[D]. 沈阳: 东北大学, 2012. |
WANG Xiaodong. Analysis of simulation and optimization on heat transfer in shell-and-tube heat exchanger[D]. Shenyang: Northeastern University, 2012. | |
3 | 王志伟. 管壳式换热器壳程折流部件的传热性能研究[D]. 大庆: 东北石油大学, 2021. |
WANG Zhiwei. Study on the structural design and heat transfer performance of a new type of baffle unit[D]. Daqing: Northeast Petroleum University, 2021. | |
4 | Philippe WILDI-TREMBLAY, GOSSELIN Louis. Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance[J]. International Journal of Energy Research, 2007, 31(9): 867-885. |
5 | Resat SELBAŞ, Önder KıZıLKAN, REPPICH Marcus. A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(4): 268-275. |
6 | KHALFE Nadeem, LAHIRI Kumar, WADHWA Kumar. Simulated annealing technique to design minimum cost exchanger[J]. Chemical Industry and Chemical Engineering Quarterly, 2011, 17(4): 409-427. |
7 | RAVAGNANI Mauro A S S, SILVA Aline P, BISCAIA Evaristo C, et al. Optimal design of shell-and-tube heat exchangers using particle swarm optimization[J]. Industrial & Engineering Chemistry Research, 2009, 48(6): 2927-2935. |
8 | PATEL V K, RAO R V. Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique[J]. Applied Thermal Engineering, 2010, 30(11/12): 1417-1425. |
9 | ŞENCAN ŞAHIN Arzu, Bayram KıLıÇ, Ulaş KıLıÇ. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm[J]. Energy Conversion and Management, 2011, 52(11): 3356-3362. |
10 | KHOSRAVI Rihanna, KHOSRAVI Abbas, NAHAVANDI Saeid. Assessing performance of genetic and firefly algorithms for optimal design of heat exchangers[C]//2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). San Diego, CA, USA. IEEE, 2014: 3296-3301. |
11 | ONISHI Viviani C, RAVAGNANI Mauro A S S, CABALLERO José A. Mathematical programming model for heat exchanger design through optimization of partial objectives[J]. Energy Conversion and Management, 2013, 74: 60-69. |
12 | GONÇALVES Caroline de O, COSTA André L H, BAGAJEWICZ Miguel J. Shell and tube heat exchanger design using mixed-integer linear programming[J]. AIChE Journal, 2017, 63(6): 1907-1922. |
13 | MANGLIK R M, BERGLES A E. Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: Part I—Laminar flows[J]. Journal of Heat Transfer, 1993, 115(4): 881-889. |
14 | SARMA P K, KISHORE P S, RAO V Dharma, et al. A combined approach to predict friction coefficients and convective heat transfer characteristics in a tube with twisted tape inserts for a wide range of Re and Pr [J]. International Journal of Thermal Sciences, 2005, 44(4): 393-398. |
15 | SETHUMADHAVAN R, RAJA RAO M. Turbulent flow heat transfer and fluid friction in helical-wire-coil-inserted tubes[J]. International Journal of Heat and Mass Transfer, 1983, 26(12): 1833-1845. |
16 | RAVIGURURAJAN T S, BERGLES A E. Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes[J]. Experimental Thermal and Fluid Science, 1996, 13(1): 55-70. |
17 | Mafizul HUQ, AZIZ-UL HUQ A M, RAHMAN Muhammad Mustafizur. Experimental measurements of heat transfer in an internally finned tube[J]. International Communications in Heat and Mass Transfer, 1998, 25(5): 619-630. |
18 | JENSEN Michael K, VLAKANCIC Alex. Technical note experimental investigation of turbulent heat transfer and fluid flow in internally finned tubes[J]. International Journal of Heat and Mass Transfer, 1999, 42(7): 1343-1351. |
19 | STEHLÍK P, NĚMČANSKÝ J, KRAL D, et al. Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles[J]. Heat Transfer Engineering, 1994, 15(1): 55-65. |
20 | SERTH Robert W, LESTINA Thomas G. Process heat transfer principles, applications and rules of thumb[M]. 2nd ed. Oxford: Academic Press, 2014. |
21 | CHANG Chenglin, LIAO Zuwei, COSTA André L H, et al. Globally optimal design of intensified shell and tube heat exchangers using complete set trimming[J]. Computers & Chemical Engineering, 2022, 158: 107644. |
22 | COSTA André, BAGAJEWICZ Miguel J. 110th anniversary: On the departure from heuristics and simplified models toward globally optimal design of process equipment[J]. Industrial & Engineering Chemistry Research, 2019, 58(40): 18684-18702. |
23 | JIANG Ning, SHELLEY Jacob David, SMITH Robin. New models for conventional and heat exchangers enhanced with tube inserts for heat exchanger network retrofit[J]. Applied Thermal Engineering, 2014, 70(1): 944-956. |
24 | GONÇALVES Caroline de O, COSTA André L H, BAGAJEWICZ Miguel J. Alternative mixed-integer linear programming formulations for shell and tube heat exchanger optimal design[J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 5970-5979. |
25 | HEWITT Geoffrey Frederick. Heat exchanger design handbook 2008[M]. New York: Begell house, 2008. |
26 | CHANG Chenglin, SHEN Weifeng. Global optimization of the design of intensified shell and tube heat exchanger using tube inserts[J]. The Canadian Journal of Chemical Engineering, 2024, 102(1):350-365. |
[1] | ZHANG Xiaotian, LIU Siqi, CUI Guomin, HUANG Xiaohuang, DUAN Huanhuan, WANG Jinyang. Heat exchanger network synthesis based on directional coordination strategy to improve heat exchange unit optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4342-4353. |
[2] | SUN Chao, AI Shiqin, LIU Yuechan. Numerical simulation plate side flow heat transfer new plate-shell heat exchanger with considering physical property changes and shell heat transfer [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1676-1689. |
[3] | CHEN Hongfei, YANG Fuxin, TAN Houzhang, CAO Jingyu, WU Shengyuan. Heat transfer performance simulation and optimization of deep borehole heat exchanger array [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1241-1251. |
[4] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[5] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[6] | QI Chenglu, ZHANG Zhongliang, WANG Mingchao, LI Yaopeng, GONG Xiaohui, SUN Peng, ZHENG Bin. Effects of built-in tube bundle arrangements on solid particle flow characteristics in heat exchangers [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2306-2314. |
[7] | ZHU Tianyu, SUN Lin, REN Chao, LUO Xionglin. Sliding window analysis and slow-release margin optimal control for heat exchanger networks based on full cycle sustainable energy saving [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1195-1205. |
[8] | SUN Chongzheng, FAN Xin, LI Yuxing, XU Jie, HAN Hui, LIU Liang. Coupling characteristics of hydrogen heat transfer and normal-parahydrogen conversion in offshore porous media channels [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1281-1290. |
[9] | LIU Junkang, WANG Hongchao, XIONG Tong, YAN Gang, GUO Ning, LIU Rui. Review on research status of circuit optimization of finned tube heat exchanger in heat pump and air conditioning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 107-117. |
[10] | ZHAO Huacong, ZHU Weixuan, YE Haotian, DONG Hongguang. Research on synchronous optimization of steam power system for processing units and thermal power plant operation [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 44-53. |
[11] | GU Xin, ZHANG Qianxin, WANG Chaopeng, FANG Yunge, LI Ning, WANG Yongqing. Analysis of heat transfer and resistance performance of U-shaped baffle heat exchanger [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3465-3474. |
[12] | LIU Shijie, MO Xun, TU Aimin, ZHU Dongsheng, TAN Lianyuan. Shell-side heat transfer enhancement of a novel longitudinal flow oil cooler [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3475-3482. |
[13] | LI Yifan, WANG Zhipeng. Flow and heat transfer characteristics in microchannels with periodic fluid disturbance structures [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2893-2901. |
[14] | LI Yongtong, LIU Jian, YANG Laishun. Thermo-hydraulic performance analysis of novel metal foam and pin fin hybrid heat sink [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2268-2276. |
[15] | YANG Honghai, ZHANG Miao, LIU Liwei, ZHOU Yi, SHEN Junjie, SHI Weigang, YIN Yong. Heat transfer performance enhancement and prediction in GO/water pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1725-1734. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 75
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |