Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3465-3474.DOI: 10.16085/j.issn.1000-6613.2021-1633
• Chemical processes and equipment • Previous Articles Next Articles
GU Xin1(), ZHANG Qianxin1, WANG Chaopeng2, FANG Yunge1, LI Ning1, WANG Yongqing1()
Received:
2021-08-02
Revised:
2021-09-09
Online:
2022-07-23
Published:
2022-07-25
Contact:
WANG Yongqing
古新1(), 张前欣1, 王超鹏2, 方运阁1, 李宁1, 王永庆1()
通讯作者:
王永庆
作者简介:
古新(1978—),男,博士,教授,研究方向为传热传质。E-mail: 基金资助:
CLC Number:
GU Xin, ZHANG Qianxin, WANG Chaopeng, FANG Yunge, LI Ning, WANG Yongqing. Analysis of heat transfer and resistance performance of U-shaped baffle heat exchanger[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3465-3474.
古新, 张前欣, 王超鹏, 方运阁, 李宁, 王永庆. U形导流板换热器传热和阻力性能分析[J]. 化工进展, 2022, 41(7): 3465-3474.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1633
筒体内径/mm | 换热管长度/mm | 换热管间距/mm | 换热管尺寸/mm | 导流板倾角/(°) | 导流板宽度/mm | 导流板间距/mm | 换热管数量 | 布管方式 |
---|---|---|---|---|---|---|---|---|
150 | 160 | 25 | ?19×2 | 45 | 60 | 80 | 21 | 正方形 |
筒体内径/mm | 换热管长度/mm | 换热管间距/mm | 换热管尺寸/mm | 导流板倾角/(°) | 导流板宽度/mm | 导流板间距/mm | 换热管数量 | 布管方式 |
---|---|---|---|---|---|---|---|---|
150 | 160 | 25 | ?19×2 | 45 | 60 | 80 | 21 | 正方形 |
网格大小/mm | 压降/Pa·m-1 | 误差/% | 传热系数/W·m-2·K-1 | 误差 |
---|---|---|---|---|
5 | 954.1 | — | 2278.8 | — |
4 | 974.5 | 2.1 | 2292.5 | 0.6 |
3 | 985.6 | 1.1 | 2297.8 | 0.2 |
2 | 992.2 | 0.7 | 2275.5 | 0.9 |
网格大小/mm | 压降/Pa·m-1 | 误差/% | 传热系数/W·m-2·K-1 | 误差 |
---|---|---|---|---|
5 | 954.1 | — | 2278.8 | — |
4 | 974.5 | 2.1 | 2292.5 | 0.6 |
3 | 985.6 | 1.1 | 2297.8 | 0.2 |
2 | 992.2 | 0.7 | 2275.5 | 0.9 |
激光功率/W | 蓝色波长/nm | 绿色波长/nm | 光束直径/mm | 透镜焦距/mm | 透镜型号 | 探头型号 |
---|---|---|---|---|---|---|
2 | 488 | 514.5 | 2.65 | 363 | TLN06-350 | TR*60 |
激光功率/W | 蓝色波长/nm | 绿色波长/nm | 光束直径/mm | 透镜焦距/mm | 透镜型号 | 探头型号 |
---|---|---|---|---|---|---|
2 | 488 | 514.5 | 2.65 | 363 | TLN06-350 | TR*60 |
M/kg·s-1 | U形导流板换热器 | 扭转流换热器 | ||||
---|---|---|---|---|---|---|
Δp/Pa·m-1 | h/W·m-2·K-1 | Nu/f 1/3 | Δp/Pa·m-1 | h/W·m-2·K-1 | Nu/f 1/3 | |
1.4 | 545.5 | 1960.7 | 50.9 | 992.2 | 2275.5 | 41.7 |
2.1 | 1189 | 2765.9 | 72.5 | 2266.6 | 3268.1 | 68.0 |
2.81 | 2094.4 | 3613.2 | 95.8 | 4156.4 | 4184.4 | 86.6 |
3.51 | 3239.9 | 4454.3 | 119.4 | 5975.3 | 5056.7 | 107.6 |
4.21 | 4661.8 | 5278.3 | 141.5 | 8596.3 | 5897.5 | 126.2 |
M/kg·s-1 | U形导流板换热器 | 扭转流换热器 | ||||
---|---|---|---|---|---|---|
Δp/Pa·m-1 | h/W·m-2·K-1 | Nu/f 1/3 | Δp/Pa·m-1 | h/W·m-2·K-1 | Nu/f 1/3 | |
1.4 | 545.5 | 1960.7 | 50.9 | 992.2 | 2275.5 | 41.7 |
2.1 | 1189 | 2765.9 | 72.5 | 2266.6 | 3268.1 | 68.0 |
2.81 | 2094.4 | 3613.2 | 95.8 | 4156.4 | 4184.4 | 86.6 |
3.51 | 3239.9 | 4454.3 | 119.4 | 5975.3 | 5056.7 | 107.6 |
4.21 | 4661.8 | 5278.3 | 141.5 | 8596.3 | 5897.5 | 126.2 |
试验 | 角度/(°) | 间距/mm | 宽度/mm | 布置方式 | Δp/Pa·m-1 | h/W·m-2·K-1 |
---|---|---|---|---|---|---|
1 | 30 | 80 | 50 | 平行布置 | 1828.66 | 2806.07 |
2 | 30 | 100 | 90 | 对折布置 | 7637.88 | 4178.98 |
3 | 30 | 120 | 70 | 旋转布置 | 1563.35 | 2555.43 |
4 | 45 | 80 | 90 | 旋转布置 | 599.69 | 2044.33 |
5 | 45 | 100 | 70 | 平行布置 | 536.18 | 1955.49 |
6 | 45 | 120 | 50 | 对折布置 | 1563.8 | 2876.81 |
7 | 60 | 80 | 70 | 对折布置 | 964.47 | 2563.93 |
8 | 60 | 100 | 50 | 旋转布置 | 159.99 | 1437.52 |
9 | 60 | 120 | 90 | 平行布置 | 218.98 | 1748.42 |
试验 | 角度/(°) | 间距/mm | 宽度/mm | 布置方式 | Δp/Pa·m-1 | h/W·m-2·K-1 |
---|---|---|---|---|---|---|
1 | 30 | 80 | 50 | 平行布置 | 1828.66 | 2806.07 |
2 | 30 | 100 | 90 | 对折布置 | 7637.88 | 4178.98 |
3 | 30 | 120 | 70 | 旋转布置 | 1563.35 | 2555.43 |
4 | 45 | 80 | 90 | 旋转布置 | 599.69 | 2044.33 |
5 | 45 | 100 | 70 | 平行布置 | 536.18 | 1955.49 |
6 | 45 | 120 | 50 | 对折布置 | 1563.8 | 2876.81 |
7 | 60 | 80 | 70 | 对折布置 | 964.47 | 2563.93 |
8 | 60 | 100 | 50 | 旋转布置 | 159.99 | 1437.52 |
9 | 60 | 120 | 90 | 平行布置 | 218.98 | 1748.42 |
水平 | 角度/(°) | 间距/mm | 宽度/mm | 布置方式 |
---|---|---|---|---|
均值1 | 3676.63 | 1130.94 | 1184.15 | 861.27 |
均值2 | 899.89 | 2778.02 | 2818.85 | 3388.71 |
均值3 | 447.81 | 1115.38 | 1021.33 | 774.34 |
极差 | 3228.82 | 1662.64 | 1797.52 | 2614.37 |
水平 | 角度/(°) | 间距/mm | 宽度/mm | 布置方式 |
---|---|---|---|---|
均值1 | 3676.63 | 1130.94 | 1184.15 | 861.27 |
均值2 | 899.89 | 2778.02 | 2818.85 | 3388.71 |
均值3 | 447.81 | 1115.38 | 1021.33 | 774.34 |
极差 | 3228.82 | 1662.64 | 1797.52 | 2614.37 |
水平 | 角度/(°) | 间距/mm | 宽度/mm | 布置方式 |
---|---|---|---|---|
均值1 | 3180.16 | 2471.44 | 2373.47 | 2169.99 |
均值2 | 2292.21 | 2524 | 2657.24 | 3206.57 |
均值3 | 1916.62 | 2393.55 | 2358.28 | 2012.43 |
极差 | 1263.54 | 130.45 | 298.96 | 1194.14 |
水平 | 角度/(°) | 间距/mm | 宽度/mm | 布置方式 |
---|---|---|---|---|
均值1 | 3180.16 | 2471.44 | 2373.47 | 2169.99 |
均值2 | 2292.21 | 2524 | 2657.24 | 3206.57 |
均值3 | 1916.62 | 2393.55 | 2358.28 | 2012.43 |
极差 | 1263.54 | 130.45 | 298.96 | 1194.14 |
1 | 林文珠, 曹嘉豪, 方晓明, 等. 管壳式换热器强化传热研究进展[J]. 化工进展, 2018, 37(4): 1276-1286. |
LIN Wenzhu, CAO Jiahao, FANG Xiaoming, et al. Research progress of heat transfer enhancement of shell-and-tube heat exchanger[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1276-1286. | |
2 | YOUCEF A, SAIM R. Computational analysis of turbulent flow and thermal transfer in a shell and tube heat exchanger[J]. International Journal of Heat and Technology, 2019, 37(4): 1043-1051. |
3 | 钱才富, 高宏宇, 孙海阳. 曲面弓形折流板换热器壳程流体流动与传热[J]. 化工学报, 2011, 62(5): 1233-1238. |
QIAN Caifu, GAO Hongyu, SUN Haiyang. Shell-side fluid flow and heat transfer in curved baffle heat exchanger[J]. CIESC Journal, 2011, 62(5): 1233-1238. | |
4 | 董其伍, 杜庆飞, 刘敏珊, 等. 三叶孔板换热器壳程流体流动和传热特性数值研究[J]. 化工设备与管道, 2012, 49(2): 21-23, 27. |
DONG Qingwu, Du Qingfei, LIU Minshan, et al. Numerical research on flow and heat transfer characteristics in shell-side of heat exchanger with trefoil-tube-support[J]. Process Equipment & Piping, 2012, 49(2): 21-23, 27. | |
5 | 王斯民, 孙利娟, 宋晨, 等. 螺旋扁管折流杆换热器壳侧性能多目标优化研究[J]. 化工学报, 2019, 70(9): 3353-3362. |
WANG Simin, SUN Lijuan, SONG Chen, et al. Multi-objective optimization on shell-side performance of rod-baffle heat exchangers with twisted oval tubes[J]. CIESC Journal, 2019, 70(9): 3353-3362. | |
6 | 王新婷, 郑年本, 刘鹏, 等. 波形折流杆换热器的流动与传热性能分析[J]. 工程热物理学报, 2016, 37(8): 1758-1762. |
WANG Xinting, ZHENG Nianben, LIU Peng, et al. Analysis of flow and heat transfer capability in rod baffle heat exchangers with ripple rods[J]. Journal of Engineering Thermophysics, 2016, 37(8): 1758-1762. | |
7 | LI X Z, ZHU D S, YIN Y D, et al. Parametric study on heat transfer and pressure drop of twisted oval tube bundle with in line layout[J]. International Journal of Heat and Mass Transfer, 2019, 135: 860-872. |
8 | GU X, LIU B, WANG Y Q, et al. Heat transfer and flow resistance performance of shutter baffle heat exchanger with triangle tube layout in shell side[J]. Advances in Mechanical Engineering, 2016, 8(3): 168781401664101. |
9 | 王斯民, 肖娟, 王家瑞, 等. 基于流固耦合理论的螺旋折流板换热器结构优化研究[J]. 高校化学工程学报, 2017, 31(3): 539-546. |
WANG Simin, XIAO Juan, WANG Jiarui, et al. Structural optimization of shell-tube heat exchanger with helical baffles based on fluid-structure interaction[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3): 539-546. | |
10 | CHEN Y P, TANG H L, WU J F, et al. Performance comparison of heat exchangers using sextant/trisection helical baffles and segmental ones[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2892-2899. |
11 | DU W J, WANG H F, CHENG L. Effects of shape and quantity of helical baffle on the shell-side heat transfer and flow performance of heat exchangers[J]. Chinese Journal of Chemical Engineering, 2014, 22(3): 243-251. |
12 | SALAHUDDIN U, BILAL M, EJAZ H. A review of the advancements made in helical baffles used in shell and tube heat exchangers[J]. International Communications in Heat and Mass Transfer, 2015, 67:104-108. |
13 | CAO X, DU T T, LIU Z, et al. Experimental and numerical investigation on heat transfer and fluid flow performance of sextant helical baffle heat exchangers[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118437. |
14 | WANG Xinting, ZHENG Nianben, LIU Zhichunet al. Numerical analysis and optimization study on shell-side performances of a shell and tube heat exchanger with staggered baffles[J]. International Journal of Heat and Mass Transfer, 2018, 124: 247-259. |
15 | MAAKOUL A EL, LAKNIZI A, SAADEDDINE S, et al. Numerical comparison of shell-side performance for shell and tube heat exchangers with trefoil-hole, helical and segmental baffles[J]. Applied Thermal Engineering, 2016, 109: 175-185. |
16 | MOHAMMADI M H, ABBASI H R, YAVARINSAB A, et al. Thermal optimization of shell and tube heat exchanger using porous baffles[J]. Applied Thermal Engineering, 2020, 170: 115005. |
17 | 马璐, 王珂, 王永庆, 等. 帘式折流片换热器壳程热力特性的数值研究[J]. 化学工程, 2016, 44(12): 26-30. |
MA Lu, WANG Ke, WANG Yongqing, et al. Numerical research on thermodynamic characteristics in shell-side of shell-and-tube heat exchanger with shutter baffles[J]. Chemical Engineering, 2016, 44(12): 26-30. | |
18 | JIAN W, YANG H Z, WANG S M, et al. Numerical investigation on baffle configuration improvement of the heat exchanger with helical baffles[J]. Energy Conversion and Management, 2015, 89: 438-448. |
19 | YANG S F, CHEN Y P, WU J F, et al. Performance simulation on unilateral ladder type helical baffle heat exchanger in half cylindrical space[J]. Energy Conversion and Management, 2017, 150: 134-147. |
20 | 张轩恺, 韩东, 何纬峰, 等. 新型螺旋梅花形孔板换热器热力性能仿真计算[J]. 工程热物理学报, 2017, 38(9): 1952-1959. |
ZHANG Xuankai, HAN Dong, HE Weifeng, et al. The simulation on thermal performance of a novel shell-and-tube heat exchanger with screw cinquefoil orifice baffles[J]. Journal of Engineering Thermophysics, 2017, 38(9): 1952-1959. | |
21 | ZHANG Xuankai, HAN Dong, HE Weifeng, et al. Numerical simulation on a novel shell-and-tube heat exchanger with screw cinquefoil orifice baffles[J]. Advances in Mechanical Engineering, 2017, 9(8): 168781401771766. |
22 | GU X, LUO Yuankun, XIONG Xiaochao, et al. Numerical and experimental investigation of the heat exchanger with trapezoidal baffle[J]. International Journal of Heat and Mass Transfer, 2018, 127: 598-606. |
23 | GU Xin, ZHENG Zhiyang, XIONG Xiaochao, et al. Characteristics of fluid flow and heat transfer in the shell side of the trapezoidal-like tilted baffles heat exchanger[J]. Journal of Thermal Science, 2018, 27(6): 602-610. |
24 | KIM T. Effect of longitudinal pitch on convective heat transfer in crossflow over in-line tube banks[J]. Annals of Nuclear Energy, 2013,57: 209-215. |
25 | 古新, 董其伍, 刘敏珊. 周期性模型在管壳式换热器数值模拟中的应用[J]. 热能动力工程, 2008, 23(1): 64-68. |
GU Xin, DONG Qiwu, LIU Minshan. Application of a periodic model in the numerical simulation of shell-and-tube heat exchangers[J]. Journal of Engineering for Thermal Energy and Power, 2018, 23(1): 64-68. | |
26 | 张鸣远, 景思睿, 李国君. 高等工程流体力学[M]. 西安: 西安交通大学出版社, 2006. |
ZHANG Mingyuan, JING Sirui, LI Guojun. Advanced fluid mechanics[M]. Xi’an: Xi’an Jiaotong University Press, 2006. | |
27 | 王宏建, 雷勇刚, 张建伟. 收缩式角孔通道对板式换热器流动均匀性的影响[J]. 科学技术与工程, 2020, 20(9): 3617-3622. |
WANG Hongjian, LEI Yonggang, ZHANG Jianwei. Effect of tapered manifold on flow uniformity of plate heat exchangers[J]. Science Technology and Engineering, 2020, 20(9): 3617-3622. | |
28 | 陶红歌, 陈焕新, 谢军龙, 等. 基于面积加权平均速度和质量加权平均速度的流体流动均匀性指标探讨[J]. 化工学报, 2010, 61(S2): 116-120. |
TAO Hongge, CHEN Huanxin, XIE Junlong, et al. Flow uniformity index based on area-weighted and mass-weighted average velocity[J]. CIESC Journal, 2010, 61(S2):116-120. | |
29 | ABBASIAN ARANI A A, MORADI R. Shell and tube heat exchanger optimization using new baffle and tube configuration[J]. Applied Thermal Engineering, 2019, 157: 113736. |
30 | WANG Y Q, WANG D, JIN Z L, et al. Laminar flow and heat transfer in a rectangular channel with walls corrugated in the orthogonal directions[J]. Chemical Engineering & Technology, 2016, 39(3): 551-558. |
31 | WANG G H, WANG D B, PENG X, et al. Experimental and numerical study on heat transfer and flow characteristics in the shell side of helically coiled trilobal tube heat exchanger[J]. Applied Thermal Engineering, 2019, 149: 772-787. |
[1] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[2] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[5] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[6] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[7] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[8] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[9] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[10] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[11] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[12] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[13] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[14] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[15] | LU Xingfu, DAI Bo, YANG Shiliang. Super-quadric discrete element method investigation of mixing behaviors of cylindrical particles in a rotating drum [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2252-2261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |