Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4354-4365.DOI: 10.16085/j.issn.1000-6613.2023-1152
• Industrial catalysis • Previous Articles
HU Tingxia1,2(), ZHAO Lixin1,2, YAO Zonglu1,2(), HUO Lili1,2, JIA Jixiu1,2, XIE Teng1,2
Received:
2023-07-09
Revised:
2023-11-22
Online:
2024-09-02
Published:
2024-08-15
Contact:
YAO Zonglu
胡婷霞1,2(), 赵立欣1,2, 姚宗路1,2(), 霍丽丽1,2, 贾吉秀1,2, 谢腾1,2
通讯作者:
姚宗路
作者简介:
胡婷霞(1992—),女,博士,助理研究员,研究方向为农业废弃物热化学转化技术。E-mail:hutingxia@caas.cn。
基金资助:
CLC Number:
HU Tingxia, ZHAO Lixin, YAO Zonglu, HUO Lili, JIA Jixiu, XIE Teng. Research progress of bimetallic catalysts in catalytic steam reforming of biomass tar[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4354-4365.
胡婷霞, 赵立欣, 姚宗路, 霍丽丽, 贾吉秀, 谢腾. 双金属催化剂在生物质焦油催化蒸汽重整领域的研究进展[J]. 化工进展, 2024, 43(8): 4354-4365.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1152
反应类型 | 方程式 | ∆H/kJ·mol-1 | 序号 |
---|---|---|---|
裂解 | — | (1) | |
加氢重整 | — | (2) | |
干法重整 | — | (3) | |
蒸汽重整 | — | (4) | |
波多反应 | +172 | (5) | |
水-汽转换 | +41 | (6) | |
甲烷重整 | +260 | (7) | |
+206 | (8) | ||
甲烷化 | -206 | (9) | |
-164 | (10) |
反应类型 | 方程式 | ∆H/kJ·mol-1 | 序号 |
---|---|---|---|
裂解 | — | (1) | |
加氢重整 | — | (2) | |
干法重整 | — | (3) | |
蒸汽重整 | — | (4) | |
波多反应 | +172 | (5) | |
水-汽转换 | +41 | (6) | |
甲烷重整 | +260 | (7) | |
+206 | (8) | ||
甲烷化 | -206 | (9) | |
-164 | (10) |
活性双金属 | 载体 | 合成方法 | 反应条件 | 模型化合物 转化率/% | 碳形成速率 | 参考文献 | |
---|---|---|---|---|---|---|---|
温度/℃ | S/C | ||||||
Ni Fe | LaNi0.8Fe0.2O3 | 溶胶-凝胶法 | 650 | 3.4 | 甲苯:53.1 | — | [ |
Ni Fe | Fe2O3-Al2O3 | 浸渍法 | 650 | 1.0~4.0 | 甲苯90(26h) | 18.3mg·gcat-1·h-1 | [ |
Ni Fe | 橄榄石 | 热熔融法 | 苯酚:800 萘:900 | — | 苯酚:100 萘:80 | 苯酚<4% 萘<50% | [ |
Ni Fe | LaNi0.8Fe0.2O3 | 溶胶-凝胶法 | 650 | 1.0 | 甲苯:90 | 5mg·gcat-1·h-1 | [ |
Ni Fe | Carbo HSP | 共沉淀法、 浸渍法 | 600~800 | — | 100 | — | [ |
Ni Fe | 坡缕石、MgO-Al2O3、La0.8Ca0.2CrO3和La0.8Ca0.2CrO3/MgO-Al2O3 | 浸渍法 | 700~900 | — | 萘和甲苯:57~86 | 5.5~15.5mmol·gcat-1 | [ |
Ni Fe | Gd-CeO2包覆的球形MgO-Al2O3 | 浸渍法 | 700 | — | 萘:80 | 2.5mmol·gcat-1 | [ |
Ni Fe | Mg/Al类水滑石 | 浸渍法 | 600 | 1.7 | 苯酚:83.2 | — | [ |
Ni Fe | 稻壳炭 | 浸渍法 | 600~900 | — | 重油:92.3 | — | [ |
Ni Fe | 水热炭 | 浸渍法、 水热炭化 | 500~900 | — | — | 2.8%~3.9% | [ |
活性双金属 | 载体 | 合成方法 | 反应条件 | 模型化合物 转化率/% | 碳形成速率 | 参考文献 | |
---|---|---|---|---|---|---|---|
温度/℃ | S/C | ||||||
Ni Fe | LaNi0.8Fe0.2O3 | 溶胶-凝胶法 | 650 | 3.4 | 甲苯:53.1 | — | [ |
Ni Fe | Fe2O3-Al2O3 | 浸渍法 | 650 | 1.0~4.0 | 甲苯90(26h) | 18.3mg·gcat-1·h-1 | [ |
Ni Fe | 橄榄石 | 热熔融法 | 苯酚:800 萘:900 | — | 苯酚:100 萘:80 | 苯酚<4% 萘<50% | [ |
Ni Fe | LaNi0.8Fe0.2O3 | 溶胶-凝胶法 | 650 | 1.0 | 甲苯:90 | 5mg·gcat-1·h-1 | [ |
Ni Fe | Carbo HSP | 共沉淀法、 浸渍法 | 600~800 | — | 100 | — | [ |
Ni Fe | 坡缕石、MgO-Al2O3、La0.8Ca0.2CrO3和La0.8Ca0.2CrO3/MgO-Al2O3 | 浸渍法 | 700~900 | — | 萘和甲苯:57~86 | 5.5~15.5mmol·gcat-1 | [ |
Ni Fe | Gd-CeO2包覆的球形MgO-Al2O3 | 浸渍法 | 700 | — | 萘:80 | 2.5mmol·gcat-1 | [ |
Ni Fe | Mg/Al类水滑石 | 浸渍法 | 600 | 1.7 | 苯酚:83.2 | — | [ |
Ni Fe | 稻壳炭 | 浸渍法 | 600~900 | — | 重油:92.3 | — | [ |
Ni Fe | 水热炭 | 浸渍法、 水热炭化 | 500~900 | — | — | 2.8%~3.9% | [ |
活性双金属 | 载体 | 合成方法 | 反应条件 | 模型化合物转化率/% | 碳形成速率 | 参考文献 | |
---|---|---|---|---|---|---|---|
温度/℃ | S/C | ||||||
Ni Co | Al2O3 | 共浸渍 | 650 | 3.4 | 甲苯:100 | — | [ |
Ni Co | CeO2负载的Al2O3 | 浸渍法 | 700 | 4 | 正十二烷:89 | — | [ |
Ni Co | ZrO2 | 初期湿润浸渍 | 600 | 1.5 | 苯酚:53.5 | 31~75 mg·g | [ |
活性双金属 | 载体 | 合成方法 | 反应条件 | 模型化合物转化率/% | 碳形成速率 | 参考文献 | |
---|---|---|---|---|---|---|---|
温度/℃ | S/C | ||||||
Ni Co | Al2O3 | 共浸渍 | 650 | 3.4 | 甲苯:100 | — | [ |
Ni Co | CeO2负载的Al2O3 | 浸渍法 | 700 | 4 | 正十二烷:89 | — | [ |
Ni Co | ZrO2 | 初期湿润浸渍 | 600 | 1.5 | 苯酚:53.5 | 31~75 mg·g | [ |
活性 双金属 | 载体 | 合成方法 | 反应条件 | 焦油及其模型化合物转化率/% | 碳形成速率 | 参考文献 | |
---|---|---|---|---|---|---|---|
温度/℃ | S/C | ||||||
Ni Cu | MgO-Al2O3 | 共浸渍 | 550 | 0.38 | 雪松木热解焦油100 | 3.1%(反应15min) | [ |
Ni Cu | MgO-Al2O3 | 共浸渍 | 850 | 1.1 | 1-甲基萘:100 | 5.7%(反应10min) | [ |
Ni Cu | SiO2p | 氨蒸发 | 600 | 0.5 | 纤维素热解焦油 | [ | |
Ni Ir | MgAl2O4 | 初期湿润浸渍法 | 850 | 苯:78 萘:78 | [ | ||
Ni Pt | La0.7Sr0.3AlO3-δ | 柠檬酸络合和浸渍 | 600 | 59.1 | [ | ||
Ni Pd | Mg(Ni, Al)O | 共沉淀 | 600~900 | 生物质焦油:80 | 1.4%(反应120min) | [ | |
Ni Re | 炭 | 浸渍法 | 500~900 | 桉树木屑热解焦油:100 | [ |
活性 双金属 | 载体 | 合成方法 | 反应条件 | 焦油及其模型化合物转化率/% | 碳形成速率 | 参考文献 | |
---|---|---|---|---|---|---|---|
温度/℃ | S/C | ||||||
Ni Cu | MgO-Al2O3 | 共浸渍 | 550 | 0.38 | 雪松木热解焦油100 | 3.1%(反应15min) | [ |
Ni Cu | MgO-Al2O3 | 共浸渍 | 850 | 1.1 | 1-甲基萘:100 | 5.7%(反应10min) | [ |
Ni Cu | SiO2p | 氨蒸发 | 600 | 0.5 | 纤维素热解焦油 | [ | |
Ni Ir | MgAl2O4 | 初期湿润浸渍法 | 850 | 苯:78 萘:78 | [ | ||
Ni Pt | La0.7Sr0.3AlO3-δ | 柠檬酸络合和浸渍 | 600 | 59.1 | [ | ||
Ni Pd | Mg(Ni, Al)O | 共沉淀 | 600~900 | 生物质焦油:80 | 1.4%(反应120min) | [ | |
Ni Re | 炭 | 浸渍法 | 500~900 | 桉树木屑热解焦油:100 | [ |
反应类型 | 方程式 | 序号 |
---|---|---|
炭沉积 | (11) | |
(12) | ||
(13) | ||
(14) | ||
(15) | ||
(16) | ||
(17) | ||
(18) | ||
中毒 | (19) | |
(20) | ||
(21) | ||
(22) | ||
(23) | ||
结构破坏 | (24) | |
(25) | ||
(26) | ||
(27) | ||
(28) |
反应类型 | 方程式 | 序号 |
---|---|---|
炭沉积 | (11) | |
(12) | ||
(13) | ||
(14) | ||
(15) | ||
(16) | ||
(17) | ||
(18) | ||
中毒 | (19) | |
(20) | ||
(21) | ||
(22) | ||
(23) | ||
结构破坏 | (24) | |
(25) | ||
(26) | ||
(27) | ||
(28) |
1 | 贺东洋, 梁国威, 李欣阳, 等. 生物质炭在焦油裂解脱除领域的研究进展[J]. 生物质化学工程, 2021, 55(4): 77-84. |
HE Dongyang, LIANG Guowei, LI Xinyang, et al. Research review on cracking and removal of tar catalyzed by biomass coke[J]. Biomass Chemical Engineering, 2021, 55(4): 77-84. | |
2 | 郝晓文, 贾吉秀, 姚宗路, 等. 秸秆热解炭气联产热解焦油雾化试验[J]. 农业工程学报, 2020, 36(23): 250-257. |
HAO Xiaowen, JIA Jixiu, YAO Zonglu, et al. Experiment on atomization of pyrolyzed tar from carbon-gas co-production through straw pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(23): 250-257. | |
3 | ZHU Fengsen, ZHANG Hao, YANG Haiping, et al. Plasma reforming of tar model compound in a rotating gliding arc reactor: Understanding the effects of CO2 and H2O addition[J]. Fuel, 2020, 259: 116271. |
4 | 马晓茜, 廖艳芬, 陈新飞. 生物质热解焦油CO2重整技术研究进展[J]. 洁净煤技术, 2023, 29(12): 1-10. |
MA Xiaoqian, LIAO Yanfen, CHEN Xinfei. Research progress on CO2 reforming of biomass pyrolysis tar[J]. Clean Coal Technology, 2023, 29(12): 1-10. | |
5 | 尚双, 兰奎, 王艳, 等. 生物质焦油重整催化剂的研究进展[J]. 生物质化学工程, 2020, 54(6): 65-73. |
SHANG Shuang, LAN Kui, WANG Yan, et al. Research progress on catalyst for tar reforming in biomass gasification[J]. Biomass Chemical Engineering, 2020, 54(6): 65-73. | |
6 | 方书起, 王毓谦, 李攀, 等. 生物油催化重整制氢研究进展[J]. 化工进展, 2022, 41(3): 1330-1339. |
FANG Shuqi, WANG Yuqian, LI Pan, et al. Research progress of hydrogen production by catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1330-1339. | |
7 | 赵小燕, 汤文, 曹景沛, 等. 炭载金属催化剂在生物质焦油重整中的研究进展[J]. 燃料化学学报, 2022, 50(12): 1547-1563. |
ZHAO Xiaoyan, TANG Wen, CAO Jingpei, et al. Recent progress of tar reforming over char supported metal catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1547-1563. | |
8 | 孟竹辉, 刘倩, 钟文琪, 等. Ni-Ce-La/HZSM-5催化焦油模化物甲苯重整反应研究[J]. 太阳能学报, 2023, 44(3): 260-269. |
MENG Zhuhui, LIU Qian, ZHONG Wenqi, et al. Study on Ni-Ce-La/HZSM-5 catalyzed reformation of tar modle compounds toluene[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 260-269. | |
9 | HE Limo, HU Song, YIN Xiaofei, et al. Promoting effects of Fe-Ni alloy on co-production of H2 and carbon nanotubes during steam reforming of biomass tar over Ni-Fe/α-Al2O3 [J]. Fuel, 2020, 276: 118116. |
10 | YANG Feilong, CAO Jingpei, ZHAO Xiaoyan, et al. Acid washed lignite char supported bimetallic Ni-Co catalyst for low temperature catalytic reforming of corncob derived volatiles[J]. Energy Conversion and Management, 2019, 196: 1257-1266. |
11 | VOGT Charlotte, KRANENBORG Jelle, MONAI Matteo, et al. Structure sensitivity in steam and dry methane reforming over nickel: Activity and carbon formation[J]. ACS Catalysis, 2020, 10(2): 1428-1438. |
12 | WANG Zhihao, CAO Jingpei, TANG Wen, et al. Facile synthesis of low-cost Co-Cu/C alloy catalysts for hydrogen-rich syngas production from low-temperature steam reforming of biomass tar[J]. Chemical Engineering Science, 2023, 267: 118370. |
13 | 陈文轩, 刘鹏, 李学琴, 等. 生物质焦油催化裂解催化剂的研究进展[J]. 林产工业, 2022, 59(3): 41-48. |
CHEN Wenxuan, LIU Peng, LI Xueqin, et al. Research progress of catalytic cracking catalysts for biomass tar[J]. China Forest Products Industry, 2022, 59(3): 41-48. | |
14 | 李学琴, 吴幼青, 雷廷宙, 等. 生物质焦油热解制富氢燃气的研究进展及展望[J]. 太阳能学报, 2023, 44(7): 530-535. |
LI Xueqin, WU Youqing, LEI Tingzhou, et al. Research progress and prospect of hydrogen-rich gas from biomass tar pyrolysis[J]. Acta Energiae Solaris Sinica, 2023, 44(7): 530-535. | |
15 | FRAINETTI Alexandra J, KLINGHOFFER Naomi B. Recent experimental advances on the utilization of biochar as a tar reforming catalyst: A review[J]. International Journal of Hydrogen Energy, 2023, 48(22): 8022-8044. |
16 | REN Jie, CAO Jingpei, ZHAO Xiaoyan, et al. Recent progress and perspectives of catalyst design and downstream integration in biomass tar reforming[J]. Chemical Engineering Journal, 2022, 429: 132316. |
17 | 展新, 吴文广, 崔国民. 生物质气化过程中热解焦油的生成及其均相转化机理[J]. 能源研究与信息, 2019, 35(3): 125-133. |
ZHAN Xin, WU Wenguang, CUI Guomin. Formation and homogeneous conversion mechanism of biomass pyrolysis tar[J]. Energy Research and Information, 2019, 35(3): 125-133. | |
18 | QIN Tao, YUAN Shenfu. Research progress of catalysts for catalytic steam reforming of high temperature tar: A review[J]. Fuel, 2023, 331: 125790. |
19 | REN Jie, CAO Jingpei, ZHAO Xiaoyan, et al. Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109426. |
20 | OEMAR U, ANG P S, HIDAJAT K, et al. Promotional effect of Fe on perovskite LaNi x Fe1- x O3 catalyst for hydrogen production via steam reforming of toluene[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5525-5534. |
21 | ASHOK J, KAWI S. Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound[J]. ACS Catalysis, 2014, 4(1): 289-301. |
22 | MENG Junguang, ZHAO Zengli, WANG Xiaobo, et al. Comparative study on phenol and naphthalene steam reforming over Ni-Fe alloy catalysts supported on olivine synthesized by different methods[J]. Energy Conversion and Management, 2018, 168: 60-73. |
23 | MENG Junguang, ZHAO Zengli, WANG Xiaobo, et al. Steam reforming and carbon deposition evaluation of phenol and naphthalene used as tar model compounds over Ni and Fe olivine-supported catalysts[J]. Journal of the Energy Institute, 2019, 92(6): 1765-1778. |
24 | LAOSIRIPOJANA N, SUTTHISRIPOK W, CHAROJROCHKUL S, et al. Conversion of biomass tar containing sulphur to syngas by GdCeO2 coated NiFe bimetallic-based catalysts[J]. Applied Catalysis A: General, 2014, 478: 9-14. |
25 | OEMAR U, ANG M L, HEE W F, et al. Perovskite La x M1- x Ni0.8Fe0.2O3 catalyst for steam reforming of toluene: Crucial role of alkaline earth metal at low steam condition[J]. Applied Catalysis B: Environmental, 2014, 148/149: 231-242. |
26 | BAIDYA Tinku, CATTOLICA Robert J, SEISER Reinhard. High performance Ni-Fe-Mg catalyst for tar removal in producer gas[J]. Applied Catalysis A: General, 2018, 558: 131-139. |
27 | LAOSIRIPOJANA N, SUTTHISRIPOK W, CHAROJROCHKUL S, et al. Development of Ni-Fe bimetallic based catalysts for biomass tar cracking/reforming: Effects of catalyst support and co-fed reactants on tar conversion characteristics[J]. Fuel Processing Technology, 2014, 127: 26-32. |
28 | KOIKE Mitsuru, LI Dalin, NAKAGAWA Yoshinao, et al. A highly active and coke-resistant steam reforming catalyst comprising uniform nickel-iron alloy nanoparticles[J]. ChemSusChem, 2012, 5(12): 2312-2314. |
29 | SHEN Yafei, ZHAO Peitao, SHAO Qinfu, et al. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification[J]. Applied Catalysis B: Environmental, 2014, 152/153: 140-151. |
30 | GAI Chao, ZHANG Fang, YANG Tianxue, et al. Hydrochar supported bimetallic Ni-Fe nanocatalysts with tailored composition, size and shape for improved biomass steam reforming performance[J]. Green Chemistry, 2018, 20(12): 2788-2800. |
31 | TOMISHIGE Keiichi, LI Dalin, TAMURA Masazumi, et al. Nickel-iron alloy catalysts for reforming of hydrocarbons: Preparation, structure, and catalytic properties[J]. Catalysis Science & Technology, 2017, 7(18): 3952-3979. |
32 | KATHIRASER Y, ASHOK J, KAWI S. Synthesis and evaluation of highly dispersed SBA-15 supported Ni-Fe bimetallic catalysts for steam reforming of biomass derived tar reaction[J]. Catalysis Science & Technology, 2016, 6(12): 4327-4336. |
33 | CHEN Jinhai, TAMURA Masazumi, NAKAGAWA Yoshinao, et al. Promoting effect of trace Pd on hydrotalcite-derived Ni/Mg/Al catalyst in oxidative steam reforming of biomass tar[J]. Applied Catalysis B: Environmental, 2015, 179: 412-421. |
34 | WANG Lei, LI Dalin, KOIKE Mitsuru, et al. Catalytic performance and characterization of Ni-Co catalysts for the steam reforming of biomass tar to synthesis gas[J]. Fuel, 2013, 112: 654-661. |
35 | XIAO Zhourong, LI Ling, WU Chan, et al. Ceria-promoted Ni-Co/Al2O3 catalysts for n-dodecane steam reforming[J]. Catalysis Letters, 2016, 146(9): 1780-1791. |
36 | NABGAN Walid, TUAN ABDULLAH Tuan Amran, Ramli MAT, et al. Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(48): 22922-22931. |
37 | XIE Hong, LU Junling, SHEKHAR Mayank, et al. Synthesis of Na-stabilized nonporous t-ZrO2 supports and Pt/t-ZrO2 catalysts and application to water-gas-shift reaction[J]. ACS Catalysis, 2013, 3(1): 61-73. |
38 | ASHOK J, KATHIRASER Y, ANG M L, et al. Ni and/or Ni-Cu alloys supported over SiO2 catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction[J]. Catalysis Science & Technology, 2015, 5(9): 4398-4409. |
39 | LI Dalin, KOIKE Mitsuru, CHEN Jinhai, et al. Preparation of Ni-Cu/Mg/Al catalysts from hydrotalcite-like compounds for hydrogen production by steam reforming of biomass tar[J]. International Journal of Hydrogen Energy, 2014, 39(21): 10959-10970. |
40 | LI Dalin, KOIKE Mitsuru, WANG Lei, et al. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar[J]. ChemSusChem, 2014, 7(2): 510-522. |
41 | LI Dalin, LU Miaomiao, ARAGAKI Kosuke, et al. Characterization and catalytic performance of hydrotalcite-derived Ni-Cu alloy nanoparticles catalysts for steam reforming of 1-methylnaphthalene[J]. Applied Catalysis B: Environmental, 2016, 192: 171-181. |
42 | LI Dalin, NAKAGAWA Yoshinao, TOMISHIGE Keiichi. Methane reforming to synthesis gas over Ni catalysts modified with noble metals[J]. Applied Catalysis A: General, 2011, 408(1/2): 1-24. |
43 | MUKAI Daiki, MURAI Yuki, HIGO Takuma, et al. Effect of Pt addition to Ni/La0.7Sr0.3AlO3-δ catalyst on steam reforming of toluene for hydrogen production[J]. Applied Catalysis A: General, 2014, 471: 157-164. |
44 | SOUZA Isabella C A, MANFRO Robinson L, SOUZA Mariana M V M. Hydrogen production from steam reforming of acetic acid over Pt—Ni bimetallic catalysts supported on ZrO2 [J]. Biomass and Bioenergy, 2022, 156, 106317. |
45 | DAGLE Vanessa Lebarbier, DAGLE Robert, KOVARIK Libor, et al. Steam reforming of hydrocarbons from biomass-derived syngas over MgAl2O4-supported transition metals and bimetallic IrNi catalysts[J]. Applied Catalysis B: Environmental, 2016, 184: 142-152. |
46 | PU Jianglong, WANG Hui, SUZUKI Masayuki, et al. Ru-Ni bimetallic catalysts for steam reforming of xylene: Effects of active metals and calcination temperature of the support[J]. RSC Advances, 2021, 11(33): 20570-20579. |
47 | DAORATTANACHAI Pornlada, LAOSIRIPOJANA Weerawan, LAOBUTHEE Apirat, et al. Type of contribution: Research article catalytic activity of sewage sludge char supported Re-Ni bimetallic catalyst toward cracking/reforming of biomass tar[J]. Renewable Energy, 2018, 121: 644-651. |
48 | WANG Lei, HISADA Yuji, KOIKE Mitsuru, et al. Catalyst property of Co-Fe alloy particles in the steam reforming of biomass tar and toluene[J]. Applied Catalysis B: Environmental, 2012, 121/122: 95-104. |
49 | KOIKE Mitsuru, HISADA Yuji, WANG Lei, et al. High catalytic activity of Co-Fe/α-Al2O3 in the steam reforming of toluene in the presence of hydrogen[J]. Applied Catalysis B: Environmental, 2013, 140/141: 652-662. |
50 | WANG Lei, CHEN Jinhai, WATANABE Hideo, et al. Catalytic performance and characterization of Co-Fe bcc alloy nanoparticles prepared from hydrotalcite-like precursors in the steam gasification of biomass-derived tar[J]. Applied Catalysis B: Environmental, 2014, 160/161: 701-715. |
51 | KOIKE Mitsuru, LI Dalin, WATANABE Hideo, et al. Comparative study on steam reforming of model aromatic compounds of biomass tar over Ni and Ni-Fe alloy nanoparticles[J]. Applied Catalysis A: General, 2015, 506: 151-162. |
52 | LIANG Tian, WANG Yishuang, CHEN Mingqiang, et al. Steam reforming of phenol-ethanol to produce hydrogen over bimetallic NiCu catalysts supported on sepiolite[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28233-28246. |
53 | YANG Xiaoqin, LIU Xuejing, GUO Tong, et al. Effects of Cu and Fe additives on low-temperature catalytic steam reforming of toluene over Ni/AC catalysts[J]. Catalysis Surveys from Asia, 2019, 23(2): 54-63. |
54 | PAN Yue, TURSUN Yalkunjan, GUO Yao, et al. Catalytic steam reforming of toluene as model tar compound of biomass gasification over Cu/Ni/olivine[J]. Chemical Engineering & Technology, 2022, 45(8): 1501-1511. |
55 | WANG Shuxiao, SHAN Rui, GU Jing, et al. Pyrolysis waste char supported metallic catalyst for syngas production during catalytic reforming of benzene[J]. International Journal of Hydrogen Energy, 2021, 46(38): 19835-19845. |
56 | WANG Shuxiao, SHAN Rui, GU Jing, et al. Pyrolysis municipal sludge char supported Fe/Ni catalysts for catalytic reforming of tar model compound[J]. Fuel, 2020, 279: 118494. |
57 | OCHOA Aitor, BILBAO Javier, GAYUBO Ana G, et al. Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109600. |
58 | BINTE MOHAMED Dara Khairunnisa, VEKSHA Andrei, Teik-Thye LIM, et al. Hydrogen bromide in syngas: Effects on tar reforming, water gas-shift activities and sintering of Ni-based catalysts[J]. Applied Catalysis B: Environmental, 2021, 280: 119435. |
59 | HERNANDEZ Asbel David, KAISALO Noora, SIMELL Pekka, et al. Effect of H2S and thiophene on the steam reforming activity of nickel and rhodium catalysts in a simulated coke oven gas stream[J]. Applied Catalysis B: Environmental, 2019, 258: 117977. |
60 | GAO Xingyuan, ASHOK Jangam, KAWI Sibudjing, et al. Steam reforming of toluene as model compound of biomass tar over Ni-Co/La2O3 nano-catalysts: Synergy of Ni and Co[J]. International Journal of Hydrogen Energy, 2021, 46(60): 30926-30936. |
61 | CHATLA Anjaneyulu, GHOURI Minhaj M, HASSAN Omar Wissam EL, et al. An experimental and first principles DFT investigation on the effect of Cu addition to Ni/Al2O3 catalyst for the dry reforming of methane[J]. Applied Catalysis A: General, 2020, 602: 117699. |
62 | ENGELEN Karen, ZHANG Yuhong, DRAELANTS Dirk J, et al. A novel catalytic filter for tar removal from biomass gasification gas: Improvement of the catalytic activity in presence of H2S[J]. Chemical Engineering Science, 2003, 58(3/4/5/6): 665-670. |
63 | DOU Xiaomin, VEKSHA Andrei, CHAN Weiping, et al. Poisoning effects of H2S and HCl on the naphthalene steam reforming and water-gas shift activities of Ni and Fe catalysts[J]. Fuel, 2019, 241: 1008-1018. |
64 | ABOU RJEILY Mira, CHAGHOURI Muriel, GENNEQUIN Cedric, et al. Biomass pyrolysis followed by catalytic hybrid reforming for syngas production[J]. Waste and Biomass Valorization, 2023, 14(8): 2715-2743. |
[1] | YAO Xue, WU Shuhui, YANG Yang, WANG Xiao, FENG Lei, FENG Xuedong, MA Yanfei. Treatment of oily wastewater by oily sludge-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3398-3409. |
[2] | WANG Houran, LI Denian, DONG Nanhang, YANG Jizhang, NI Xuanyuan, YE Jiahong, YUAN Haoran, CHEN Yong. Advances in direct repair of cathode materials from retired lithium iron phosphate battery and ternary lithium battery [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3336-3346. |
[3] | YAO Naiyu, CAO Jingpei, PANG Xinbo, ZHAO Xiaoyan, CAI Shijie, XU Min, ZHAO Jingping, FENG Xiaobo, YI Fengjiao. Research progress in catalytic reforming of low rank coal pyrolysis volatiles [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2279-2293. |
[4] | CHU Zhenpu, CHEN Yumeng, LI Junguo, SUN Qingxuan, LIU Ke. Review on recycling of graphite anode from spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1524-1534. |
[5] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[6] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[7] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[8] | HUANG Qizhong, LIU Bing, MA Hongpeng, LYU Wenjie. Methanol to olefin wastewater treatment based on a novel microchannel separation technology [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 669-676. |
[9] | YUAN Li, WANG Xueqian, LI Xiang, WANG Langlang, MA Yixing, NING ping, XIONG Yiran. Research advances on catalytic removal COS and H2S from by-product gas in iron and steel industry [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5147-5161. |
[10] | CUI Ruili, CHENG Tao, SONG Junnan, NIU Guifeng, LIU Yuanyuan, ZHANG Tao, ZHAO Yusheng, WANG Luhai. Regeneration characterization and performance evaluation of the fixed-bed residue hydrotreating catalyst for microcarbon reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5200-5204. |
[11] | ZHANG Jie, WANG Xudong, YANG Yifei, REN Yue, CHEN Licheng. Response surface optimization of preparation and performance of thermo-responsive hydrogels as draw agent [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5363-5372. |
[12] | YANG Xin, XU Hong, HU Weixun, LIU Hongzuo, LONG Quanzhi, ZHU Liye. Regeneration of waste lubricant oil by supercritical carbon dioxide extraction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5399-5405. |
[13] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[14] | HUANG Ye, YAN Xing, WU Qiaowei, CHAI Xiaotao, PAN Gongying, ZHANG Jinfeng, LI Xiangqian. Study of silica gel regeneration applied on cyclosporine A column chromatography [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 461-468. |
[15] | YANG Chengyu, LIU Min, YUAN Lin, HU Xuan, CHEN Ying. Adsorption of low-concentration phosphorus after cross-linked modification of bamboo-based cellulose nanofibrils [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5074-5084. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |