Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2890-2900.DOI: 10.16085/j.issn.1000-6613.2023-2118

• Chemical processes integration and optimization • Previous Articles    

Thermodynamic calculation of methane combined reforming to synthesis gas process based on Aspen Plus

PANG Shuxin1(), WANG Hao2, WANG Jianyu3, ZHU Kake1(), LIU Zhicheng4()   

  1. 1.State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
    2.Research Institute of Qilu Branch Co. , Sinopec, Zibo 255400, Shandong, China
    3.College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410005, Hunan, China
    4.State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
  • Received:2023-12-01 Revised:2024-02-14 Online:2024-06-15 Published:2024-05-15
  • Contact: ZHU Kake, LIU Zhicheng

基于Aspen Plus的甲烷联合重整制合成气过程热力学计算

庞淑馨1(), 王昊2, 王健宇3, 朱卡克1(), 刘志成4()   

  1. 1.华东理工大学化学工程联合国家重点实验室,上海 200237
    2.中石化齐鲁分公司研究院,山东 淄博 255400
    3.国防科技大学气象海洋学院,湖南 长沙 410005
    4.中石化(上海)石油化工研究院,绿色化工与工业催化国家重点实验室,上海 201208
  • 通讯作者: 朱卡克,刘志成
  • 作者简介:庞淑馨(1999—),女,硕士研究生,研究方向为催化反应工程。E-mail:Y82210036@ecust.edu.cn
  • 基金资助:
    国家自然科学基金(U1663221);中国石油化工股份有限公司项目(222215)

Abstract:

The product synthetic gas compositions in methane combined reforming are governed by thermodynamic equilibrium and the relevant coke deposition reactions are also dependent on operation conditions. Hence, quantitative thermodynamic analysis of the influences of operation conditions (feedstock composition, temperature, pressure) on product compositions and coke formation reactions are desirable for process design. In this contribution, the RGibbs reactor in Aspen Plus software was used to calculate Gibbs free energies at varied temperatures, the influence of feeding compositions, temperature and pressure on the compositions of equilibrated reaction mixtures by taking into consideration all relevant reactions. Both methane and carbon dioxide conversions increased as a consequence of temperature increase or pressure decrease, as reflected by the endothermic nature of the volume expansion reaction. When stoichiometric feed [CH4∶(CO2+H2O)=1∶1] was adopted, the influence of different conditions on the composition of reaction products was explored by changing the reaction temperature, pressure and feed composition and the equilibrium conversion of CH4 and CO2 increased with increasing temperature and tended to the limit with increasing temperature for all stoichiometric ratios. Meanwhile, methane conversion increased and the carbon deposition increased with increasing carbon dioxide to methane ratios, while methane conversion elevation and suppression of carbon deposition could be achieved by increasing the proportion of steam, even under pressurized operations. The H2/CO ratios in the product syngas could be manipulated to meet the required low concentrations for unconverted methane. With respect to specified downstream use of syngas, to generated methanol, ethanal, acetic acid and Fischer-Tropsch synthesis, the optimized operation conditions was identified. These calculations provided a thermodynamic basis for selection of bi-reforming conditions, process and catalyst design.

Key words: thermodynamics, Aspen Plus, methane combined reforming, Gibbs free energy, carbon dioxide, natural gas

摘要:

甲烷联合重整产物合成气的组成受热力学平衡控制,反应中积炭反应也受操作条件的影响,因此,计算反应条件(原料组成、温度、压力)对产物组成和积炭形成的影响,进行定量热力学分析是工艺设计所需要的。本文使用Aspen Plus软件中的RGibbs模块,建立甲烷联合重整热力学反应模型,采用吉布斯自由能最小化法,考 虑所有相关反应的进料组成、温度和压力对平衡反应混合物组成和积炭的影响。首先,设定化学计量比 CH4∶(CO2+H2O)=1∶1进料,调控CO2、H2O相对进料比例,结果发现:CO2/CH4比增加时,CH4和CO2转化率升高,但积炭量也相应增加,H2/CO比减小;CH4和CO2的平衡转化率随温度升高而升高,且随着温度升高趋于极限,可通过调节温度从而调控H2/CO比达到所需生产要求。然后,研究了压力对反应平衡的影响,结果表明CH4和CO2的热力学平衡转化率随压力升高而降低,积炭量增加。最后,结合进料比、温度和压力的影响,针对合成气制下游化学产品的不同需求以及特定氢碳比精准调控,模拟计算出合适的反应进料比例,为将来实际生产调控提供了理论计算依据。

关键词: 热力学, Aspen Plus, 甲烷联合重整, 吉布斯自由能, 二氧化碳, 天然气

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd