Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2880-2889.DOI: 10.16085/j.issn.1000-6613.2023-2210
• Chemical processes integration and optimization • Previous Articles
ZHENG Kexin1(), JIANG Yuxin2, BI Kexin1(), ZHAO Qiming3, CHEN Shaochen1, WANG Bingbing1, REN Junyu1, JI Xu1, QIU Tong3, DAI Yiyang1
Received:
2023-12-15
Revised:
2024-01-05
Online:
2024-06-15
Published:
2024-05-15
Contact:
BI Kexin
郑可欣1(), 江雨欣2, 毕可鑫1(), 赵祺铭3, 陈少臣1, 王冰冰1, 任俊宇1, 吉旭1, 邱彤3, 戴一阳1
通讯作者:
毕可鑫
作者简介:
郑可欣(1998—),女,硕士研究生,研究方向为过程系统工程。E-mail:zhengkexin@stu.scu.edu.cn。
基金资助:
CLC Number:
ZHENG Kexin, JIANG Yuxin, BI Kexin, ZHAO Qiming, CHEN Shaochen, WANG Bingbing, REN Junyu, JI Xu, QIU Tong, DAI Yiyang. Ensemble transfer learning framework for outflow compositions prediction in steam cracking process[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2880-2889.
郑可欣, 江雨欣, 毕可鑫, 赵祺铭, 陈少臣, 王冰冰, 任俊宇, 吉旭, 邱彤, 戴一阳. 用于蒸汽裂解产物成分预测的集成迁移学习框架[J]. 化工进展, 2024, 43(5): 2880-2889.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2210
评估参数 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 |
---|---|---|---|---|---|
R2 | 0.861 | 0.927 | 0.972 | 0.837 | 0.872 |
MSE | 0.008 | 0.006 | 0.013 | 0.013 | 0.009 |
评估参数 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 |
---|---|---|---|---|---|
R2 | 0.861 | 0.927 | 0.972 | 0.837 | 0.872 |
MSE | 0.008 | 0.006 | 0.013 | 0.013 | 0.009 |
评估参数 | DNN | DNN_TL | DNN_ETL |
---|---|---|---|
R2 | 0.491 | 0.881 | 0.895 |
R2_std | 0.463 | 0.046 | 0.025 |
R2_min | -1.66 | 0.610 | 0.818 |
MSE | 0.099 | 0.023 | 0.020 |
MSE_std | 0.090 | 0.009 | 0.005 |
MSE_max | 0.520 | 0.075 | 0.036 |
评估参数 | DNN | DNN_TL | DNN_ETL |
---|---|---|---|
R2 | 0.491 | 0.881 | 0.895 |
R2_std | 0.463 | 0.046 | 0.025 |
R2_min | -1.66 | 0.610 | 0.818 |
MSE | 0.099 | 0.023 | 0.020 |
MSE_std | 0.090 | 0.009 | 0.005 |
MSE_max | 0.520 | 0.075 | 0.036 |
评估参数 | DNN | DNN_TL | DNN_ETL |
---|---|---|---|
R2 | 0.486 | 0.866 | 0.896 |
R2_std | 0.494 | 0.054 | 0.019 |
R2_min | -1.30 | 0.632 | 0.828 |
MSE | 0.056 | 0.015 | 0.011 |
MSE_std | 0.055 | 0.006 | 0.002 |
MSE_max | 0.255 | 0.041 | 0.019 |
评估参数 | DNN | DNN_TL | DNN_ETL |
---|---|---|---|
R2 | 0.486 | 0.866 | 0.896 |
R2_std | 0.494 | 0.054 | 0.019 |
R2_min | -1.30 | 0.632 | 0.828 |
MSE | 0.056 | 0.015 | 0.011 |
MSE_std | 0.055 | 0.006 | 0.002 |
MSE_max | 0.255 | 0.041 | 0.019 |
配置 | DNN预训练 | 案例1中的集成迁移 | 案例2中的集成迁移 | ||||||
---|---|---|---|---|---|---|---|---|---|
CPU | GPU | 训练时间 | 训练时间 | 运算时间 | 训练时间 | 运算时间 | |||
i7-12700KF 3.60 GHz | RTX 3060 (19.9GB) | 约23min | 约1.1min | 5.8μs | 约2.1min | 5.5μs |
配置 | DNN预训练 | 案例1中的集成迁移 | 案例2中的集成迁移 | ||||||
---|---|---|---|---|---|---|---|---|---|
CPU | GPU | 训练时间 | 训练时间 | 运算时间 | 训练时间 | 运算时间 | |||
i7-12700KF 3.60 GHz | RTX 3060 (19.9GB) | 约23min | 约1.1min | 5.8μs | 约2.1min | 5.5μs |
序号 | 第一层 | 第二层 | 第三层 | 案例 1 | 案例 2 |
---|---|---|---|---|---|
1 | × | 0.832 | 0.783 | ||
2 | × | 0.876 | 0.858 | ||
3 | × | 0.881 | 0.866 | ||
4 | × | × | 0.720 | 0.676 | |
5 | × | × | 0.876 | 0.858 | |
6 | × | × | 0.835 | 0.783 | |
7 | 0.881 | 0.866 |
序号 | 第一层 | 第二层 | 第三层 | 案例 1 | 案例 2 |
---|---|---|---|---|---|
1 | × | 0.832 | 0.783 | ||
2 | × | 0.876 | 0.858 | ||
3 | × | 0.881 | 0.866 | ||
4 | × | × | 0.720 | 0.676 | |
5 | × | × | 0.876 | 0.858 | |
6 | × | × | 0.835 | 0.783 | |
7 | 0.881 | 0.866 |
1 | Tomáš HÁK, Svatava JANOUŠKOVÁ, MOLDAN Bedřich. Sustainable development goals: A need for relevant indicators[J]. Ecological Indicators, 2016, 60: 565-573. |
2 | HUANG Mengtian, ZHAI Panmao. Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society[J]. Advances in Climate Change Research, 2021, 12(2): 281-286. |
3 | LIN Xinwei, ZHAO Liang, DU Wenli, et al. Data-driven modeling and cyclic scheduling for ethylene cracking furnace system with inventory constraints[J]. Industrial & Engineering Chemistry Research, 2021, 60(9): 3687-3698. |
4 | GHOLAMI Zahra, GHOLAMI Fatemeh, Zdeněk TIŠLER, et al. A review on the production of light olefins using steam cracking of hydrocarbons[J]. Energies, 2021, 14(23): 8190. |
5 | HAN Yongming, ZHOU Rundong, GENG Zhiqiang, et al. A novel data envelopment analysis cross-model integrating interpretative structural model and analytic hierarchy process for energy efficiency evaluation and optimization modeling: Application to ethylene industries[J]. Journal of Cleaner Production, 2020, 246: 118965. |
6 | Shanmuga PRIYA S, CUCE Erdem, SUDHAKAR K. A perspective of COVID 19 impact on global economy, energy and environment[J]. International Journal of Sustainable Engineering, 2021, 14(6): 1290-1305. |
7 | NOROUZI Nima. Post-COVID-19 and globalization of oil and natural gas trade: Challenges, opportunities, lessons, regulations, and strategies[J]. International Journal of Energy Research, 2021, 45(10): 14338-14356. |
8 | FAKHROLESLAM Mohammad, SADRAMELI Seyed Mojtaba. Thermal/catalytic cracking of hydrocarbons for the production of olefins; A state-of-the-art review Ⅲ: Process modeling and simulation[J]. Fuel, 2019, 252: 553-566. |
9 | HU Guihua, WANG Honggang, QIAN F, et al. Coupled simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners[J]. Computers & Chemical Engineering, 2012, 38: 24-34. |
10 | REN Yu, GUO Gaoshun, LIAO Zuwei, et al. Kinetic modeling with automatic reaction network generator, an application to naphtha steam cracking[J]. Energy, 2020, 207: 118204. |
11 | DENTE M, RANZI E, GOOSSENS A G. Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO)[J]. Computers & Chemical Engineering, 1979, 3(1/2/3/4): 61-75. |
12 | CLYMANS P J, FROMENT G F. Computer-generation of reaction paths and rate equations in the thermal cracking of normal and branched paraffins[J]. Computers & Chemical Engineering, 1984, 8(2): 137-142. |
13 | VAN GEEM K M, REYNIERS M F, MARIN G B. Challenges of modeling steam cracking of heavy feedstocks[J]. Oil & Gas Science and Technology: Revue De L’IFP, 2008, 63(1): 79-94. |
14 | WU Hao, HAN Yongming, GENG Zhiqiang, et al. Production capacity assessment and carbon reduction of industrial processes based on novel radial basis function integrating multi-dimensional scaling[J]. Sustainable Energy Technologies and Assessments, 2022, 49: 101734. |
15 | REN Yu, LIAO Zuwei, YANG Yao, et al. Direct prediction of steam cracking products from naphtha bulk properties: Application of the two sub-networks ANN[J]. Frontiers in Chemical Engineering, 2022, 4: 983035. |
16 | SADRAMELI S M, GREEN A E S. Systematics and modeling representations of naphtha thermal cracking for olefin production[J]. Journal of Analytical and Applied Pyrolysis, 2005, 73(2): 305-313. |
17 | Natália OLAHOVÁ, SYMOENS Steffen H, DJOKIC Marko R, et al. CoatAlloy barrier coating for reduced coke formation in steam cracking reactors: Experimental validation and simulations[J]. Industrial & Engineering Chemistry Research, 2018, 57(3): 897-907. |
18 | SYMOENS Steffen H, OLAHOVA Natalia, MUÑOZ GANDARILLAS Andrés E, et al. State-of-the-art of coke formation during steam cracking: Anti-coking surface technologies[J]. Industrial & Engineering Chemistry Research, 2018, 57(48): 16117-16136. |
19 | MURATAEV F I, GALIMOV E R, GALIMOVA N YA. Substantiation of domestic material and welding technology for improving properties and competitiveness of pyrolysis furnace coils[J]. IOP Conference Series: Materials Science and Engineering, 2019, 570(1): 012071. |
20 | BAI Dehong, ZONG Yuan, ZHOU Minmin, et al. Novel cracking coil design based on positive constructing of synergetic flowing field[J]. International Journal of Heat and Mass Transfer, 2019, 129: 783-792. |
21 | TIJANI M E H, ZONDAG Herbert, VAN DELFT Yvonne. Review of electric cracking of hydrocarbons[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(49): 16070-16089. |
22 | SADRAMELI S M, GREEN Alex E S. Systematics of renewable olefins from thermal cracking of canola oil[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 445-451. |
23 | KARABA Adam, ROZHON Jakub, PATERA Jan, et al. Fischer‐Tropsch wax from renewable resources as an excellent feedstock for the steam-cracking process[J]. Chemical Engineering & Technology, 2021, 44(2): 329-338. |
24 | SUN Peiyong, LIU Sen, ZHOU Yupeng, et al. Production of renewable light olefins from fatty acid methyl esters by hydroprocessing and sequential steam cracking[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13579-13587. |
25 | WANG Kai, ZHOU Wenxuan, LIU Chenliang, et al. A multi-source transfer learning method for new mode monitoring in industrial processes[C]//2022 8th International Conference on Control, Decision and Information Technologies (CoDIT). Istanbul, Turkey. IEEE, 2022: 124-129. |
26 | PANJAPORNPON Chanin, BARDEENIZ Santi, HUSSAIN Mohamed Azlan, et al. Energy efficiency and savings analysis with multirate sampling for petrochemical process using convolutional neural network-based transfer learning[J]. Energy and AI, 2023, 14: 100258. |
27 | GUO Jingjing, DU Wenli, NASCU Ioana. Adaptive modeling of fixed-bed reactors with multicycle and multimode characteristics based on transfer learning and just-in-time learning[J]. Industrial & Engineering Chemistry Research, 2020, 59(14): 6629-6637. |
28 | HUA Feng, FANG Zhou, QIU Tong. Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling[J]. Chinese Journal of Chemical Engineering, 2018, 26(12): 2562-2572. |
29 | LIU Yi, YANG Chao, ZHANG Mingtao, et al. Development of adversarial transfer learning soft sensor for multigrade processes[J]. Industrial & Engineering Chemistry Research, 2020, 59(37): 16330-16345. |
30 | CAI Haiyong, KRZYWICKI Andrzej, OBALLA Michael C. Coke formation in steam crackers for ethylene production[J]. Chemical Engineering and Processing: Process Intensification, 2002, 41(3): 199-214. |
31 | MOHAMADALIZADEH A, TOWFIGHI J, KARIMZADEH R. Modeling of catalytic coke formation in thermal cracking reactors[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 134-139. |
32 | OLARENWAJU O F, OKONKWO P C, ADEREMI B O. Modelling and simulation of coking in the riser of an industrial fluid catalytic cracking (FCC) unit[J]. Nigerian Journal of Technology, 2015, 34(2): 301. |
33 | LU Peng, HUANG Qunxing, CHI Yong, et al. Coking and regeneration of nickel catalyst for the cracking of toluene As a tar model compound[J]. Energy & Fuels, 2017, 31(8): 8283-8290. |
34 | SADRAMELI S M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review[J]. Fuel, 2015, 140: 102-115. |
35 | ZHENG Shu, ZHANG Xiangyu, QI Chaobo, et al. Modeling of heat transfer and pyrolysis reactions in ethylene cracking furnace based on 3-D combustion monitoring[J]. International Journal of Thermal Sciences, 2015, 94: 28-36. |
36 | BIKMUKHAMETOV Timur, Johannes JÄSCHKE. Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models[J]. Computers & Chemical Engineering, 2020, 138: 106834. |
37 | ZHAO Qiming, BI Kexin, QIU Tong. Data-driven intelligent modeling framework for the steam cracking process[J]. Chinese Journal of Chemical Engineering, 2023, 61: 237-247. |
38 | LIU Jichang, SHEN Benxian, WANG Daqi, et al. Separating group compositions in naphtha by adsorption and solvent extraction to improve olefin yields of steam cracking process[J]. Journal of Petroleum Science and Engineering, 2009, 66(3/4): 156-160. |
39 | RUDER S. An overview of gradient descent optimization algorithms[M/OL]. arXiv, 2017[2023-04-08]. . |
40 | SUN Shiliang, CAO Zehui, ZHU Han, et al. A survey of optimization methods from a machine learning perspective[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3668-3681. |
41 | DODGE J, ILHARCO G, SCHWARTZ R, et al. Fine-tuning pretrained language models: weight initializations, data orders, and early stopping[EB/OL].2020[2023-04-08]. . |
42 | BROCHU Eric, CORA Vlad M, DE FREITAS Nando. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning[J]. CoRR, 2010, abs/1012.2599. |
43 | PAN Sinno Jialin, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. |
44 | JIANG Junguang, SHU Yang, WANG Jianmin, et al. Transferability in deep learning: A survey[EB/OL]. 2022[2023-04-06]. . |
45 | WOLPERT David H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259. |
46 | HARTIGAN J A, WONG M A. Algorithm AS 136: A K-means clustering algorithm[J]. Applied Statistics, 1979, 28(1): 100. |
47 | YOSINSKI Jason, CLUNE Jeff, BENGIO Yoshua, et al. How transferable are features in deep neural networks?[J]. Advances in Neural Information Processing Systems, 2014, 4(January): 3320-3328. |
48 | LUNDBERG Scott M, LEE Su-In. A unified approach to interpreting model predictions[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, December 2017: 4768–4777. |
49 | LUNDBERG S M, ERION G G, LEE S I. Consistent individualized feature attribution for tree ensembles[EB/OL]. 2019[2023-04-08]. . |
[1] | WU Xining, ZHANG Ning, QIN Jiamin, XU Long, WEI Chaoyang, MA Xiaoxun. Performance of methanol-based nanofluids with enhanced CO2 absorption under low cooling demand [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2811-2822. |
[2] | LI Xinze, ZOU Weijie, SUN Chen, FU Xuan, CHEN Qian, YUAN Liang, WANG Zicheng, XING Xiaokai, XIONG Xiaoqin, GUO Lianghui. Prediction of safe shutdown time of a supercritical CO2 pipeline in Xinjiang oilfield [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2823-2833. |
[3] | LI Ping, CHEN Xiule, ZHANG Qiang, NIAN Tengfei, WANG Yuxing, WANG Meng. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933. |
[4] | LI Lingbo. Practice and development of leak detection and repair technology in petroleum refining and petrochemical industry in the United States [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2049-2062. |
[5] | SUN Xian, LIU Jun, WANG Xiaohui, SUN Changyu, CHEN Guangjin. Review of experimental and numerical simulation research on the development of natural gas hydrate reservoir with underlying gas [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2091-2103. |
[6] | ZHANG Yuhong, LI Xuanyu, FENG Chunjian, MA Chunxun, ZHANG Chen, ZHOU Yangyang, BI Haisheng. Research progress on failure prediction and prevention technology of non-metallic pipes in oil and gas fields [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1118-1132. |
[7] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
[8] | ZHOU Yihuan, XIE Qiang, ZHOU Hongyang, LIANG Dingcheng, LIU Jinchang. Modeling of porous carbon materials based on molecular simulation: State-of-the art [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1535-1551. |
[9] | DONG Xiaohan, TIAN Yue, SU Yi. Study on the preparation of composite adsorbent with titanium-containing blast furnace slag and chromium adsorption performance [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1552-1564. |
[10] | SHAN Liang, YANG Wenqi, HONG Bo, ZHOU Rongxing, KONG Ming. Three-dimensional temperature field reconstruction of flame based on LSMR algorithm [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 659-666. |
[11] | YAN Zihan, WANG Dongdong, YIN Huimin, LIU Wenrui, LU Chunxi. Measuring and analysis methods for the mixing process of jet and gas-solid two-phase flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 713-721. |
[12] | SU Qian, DENG Xiangtian, LIU Zhenxing. Model optimization of phase fraction in oil-gas-water three-phase flow using ultrasonic testing technique [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 791-799. |
[13] | SHAN Liang, HUA Xiajie, NIU Yufeng, ZHAO Tengfei, HONG Bo, KONG Ming. Optimization method for light-field feature extraction in flame temperature field reconstruction [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 823-829. |
[14] | WANG Yue, SUN Kai, LIU Yan, CHEN Long, ZHU Xiaoyu, XU Chuanlong. Light field bubble tracking velocimetry based on the global bubble position iteration and polar coordinate system similarity algorithm [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 844-854. |
[15] | XIE Guangshuo, ZHANG Siliang, HE Song, XIAO Juan, WANG Simin. Global sensitivity analysis for particulate fouling performance based on metamodel of optimal prognosis [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 328-337. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |