Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 3593-3612.DOI: 10.16085/j.issn.1000-6613.2024-0037
• Column: Thermochemical Reaction Engineering Technology • Previous Articles
DING Lu1,2(), WANG Peiyao1,2(), KONG Lingxue3(), BAI Jin3, YU Guangsuo1,2, LI Wen3, WANG Fuchen1,2
Received:
2023-01-05
Revised:
2024-04-07
Online:
2024-08-14
Published:
2024-07-10
Contact:
DING Lu, KONG Lingxue
丁路1,2(), 王培尧1,2(), 孔令学3(), 白进3, 于广锁1,2, 李文3, 王辅臣1,2
通讯作者:
丁路,孔令学
作者简介:
丁路(1987—),男,教授,博士生导师,研究方向为含碳物料气化。E-mail:dinglu@ecust.edu.cn基金资助:
CLC Number:
DING Lu, WANG Peiyao, KONG Lingxue, BAI Jin, YU Guangsuo, LI Wen, WANG Fuchen. Progress on reaction models for coal gasification processes[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3593-3612.
丁路, 王培尧, 孔令学, 白进, 于广锁, 李文, 王辅臣. 煤气化过程反应模型研究进展[J]. 化工进展, 2024, 43(7): 3593-3612.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0037
优点 | 缺点 |
---|---|
不需考虑气化炉形状 | 无论何种气化炉在低工作温度下都无法获得热力学平衡 |
不需要了解转换机制 | 结果不精确 |
设置操作条件不受限制 | 难以解释炭化和焦油的形成 |
可提供最大的反应物转化率和最大的产物收率 | 忽视了CO2和CH4的产生 |
可便捷地进行灵敏度分析 | 高估了H2、CO的产品收率 |
相对容易实现 | 气化炉的几何形状和设计未在模型中考虑 |
动力学模型与之相较计算更加密集 | 无法准确估计焦油含量 |
可以获得最佳条件 | 不考虑出口流中的焦油、焦炭和CH4 |
优点 | 缺点 |
---|---|
不需考虑气化炉形状 | 无论何种气化炉在低工作温度下都无法获得热力学平衡 |
不需要了解转换机制 | 结果不精确 |
设置操作条件不受限制 | 难以解释炭化和焦油的形成 |
可提供最大的反应物转化率和最大的产物收率 | 忽视了CO2和CH4的产生 |
可便捷地进行灵敏度分析 | 高估了H2、CO的产品收率 |
相对容易实现 | 气化炉的几何形状和设计未在模型中考虑 |
动力学模型与之相较计算更加密集 | 无法准确估计焦油含量 |
可以获得最佳条件 | 不考虑出口流中的焦油、焦炭和CH4 |
作者 | 年份 | 定义 |
---|---|---|
Reid和Cohen | 1944 | 降温过程中全液相流体变为塑性流体对应的温度 |
Corey | 1964 | 全流体与塑性流体的分界温度,也是降温过程中首次出现屈服应力的温度 |
Watt和Fereday | 1969 | 结晶相与流体开始发生相互作用时的温度 |
Winegartner | 1974 | 熔渣由牛顿流体变为假塑性流体的温度 |
Singer(editor) | 1991 | 固相开始结晶和从液相中析出的温度 |
Nowok和Benson | 1991 | 熔体的流动性由牛顿流体变为非牛顿流体特性的温度 |
Nowok等 | 1993 | 熔渣由均相变为多相混合时的温度 |
Mills和Broadbent | 1994 | 黏度快速上升时对应的温度 |
Seggiani | 1999 | 熔渣由牛顿流体变为假塑性流体的温度 |
Vargas等 | 2001 | 晶体开始影响熔渣黏度的温度 |
Stultz和Kitto | 2005 | 黏度的对数与温度不为线性的温度 |
Spliethoff | 2010 | 黏度达到250P的温度 |
Massoudi和Wang | 2011 | 熔渣由牛顿流体变为非牛顿流体的温度 |
作者 | 年份 | 定义 |
---|---|---|
Reid和Cohen | 1944 | 降温过程中全液相流体变为塑性流体对应的温度 |
Corey | 1964 | 全流体与塑性流体的分界温度,也是降温过程中首次出现屈服应力的温度 |
Watt和Fereday | 1969 | 结晶相与流体开始发生相互作用时的温度 |
Winegartner | 1974 | 熔渣由牛顿流体变为假塑性流体的温度 |
Singer(editor) | 1991 | 固相开始结晶和从液相中析出的温度 |
Nowok和Benson | 1991 | 熔体的流动性由牛顿流体变为非牛顿流体特性的温度 |
Nowok等 | 1993 | 熔渣由均相变为多相混合时的温度 |
Mills和Broadbent | 1994 | 黏度快速上升时对应的温度 |
Seggiani | 1999 | 熔渣由牛顿流体变为假塑性流体的温度 |
Vargas等 | 2001 | 晶体开始影响熔渣黏度的温度 |
Stultz和Kitto | 2005 | 黏度的对数与温度不为线性的温度 |
Spliethoff | 2010 | 黏度达到250P的温度 |
Massoudi和Wang | 2011 | 熔渣由牛顿流体变为非牛顿流体的温度 |
作者 | 年份 | 公式 |
---|---|---|
Reid | 1944 | TCV=TS |
Sage | 1960 | TCV=HT+111K |
Watt | 1963 | TCV=3263-1470×(SiO2/Al2O3)+360×(SiO2 /Al2O3)2-14.7×(Fe2O3+CaO+MgO)+0.15×( Fe2O3+CaO+MgO)2 |
Corey | 1964 | TCV=ST |
Marshak | 1969 | TCV=0.75×HT+548K |
Song | 2011 | TCV=118+0.894Tliq |
Kong | 2013 | TCV=0.98Tmax +17.33 |
Hsieh | 2016 | TCV=FT,TCV=1900-148.3×(SiO2/Al2O3)-8.04×(Fe2O3+1.1FeO+1.43Fe) |
Ge | 2020 |
作者 | 年份 | 公式 |
---|---|---|
Reid | 1944 | TCV=TS |
Sage | 1960 | TCV=HT+111K |
Watt | 1963 | TCV=3263-1470×(SiO2/Al2O3)+360×(SiO2 /Al2O3)2-14.7×(Fe2O3+CaO+MgO)+0.15×( Fe2O3+CaO+MgO)2 |
Corey | 1964 | TCV=ST |
Marshak | 1969 | TCV=0.75×HT+548K |
Song | 2011 | TCV=118+0.894Tliq |
Kong | 2013 | TCV=0.98Tmax +17.33 |
Hsieh | 2016 | TCV=FT,TCV=1900-148.3×(SiO2/Al2O3)-8.04×(Fe2O3+1.1FeO+1.43Fe) |
Ge | 2020 |
1 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2022, 10(9): nwac217. |
2 | WU Xiaoxiang, GONG Yan, GUO Qinghua, et al. Experimental study of particle evolution characteristics below the burner plane in an impinging entrained-flow gasifier[J]. Chemical Engineering Science, 2022, 251: 117445. |
3 | 李文, 白进. 煤的灰化学[M]. 北京: 科学出版社, 2013. |
LI Wen, BAI Jin. Chemistry of ash from coal[M]. Beijing: Science Press, 2013. | |
4 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤灰熔融性的测定方法: [S]. 北京: 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Determination of fusibility of coal ash: [S]. Beijing: Standards Press of China, 2008. | |
5 | SONG Wen J, TANG Li H, ZHU Xue D, et al. Effect of coal ash composition on ash fusion temperatures[J]. Energy & Fuels, 2010, 24(1): 182-189. |
6 | KONG Lingxue, BAI Jin, LI Wen. Viscosity-temperature property of coal ash slag at the condition of entrained flow gasification: A review[J]. Fuel Processing Technology, 2021, 215: 106751. |
7 | RONCANCIO Rathziel, GORE Jay P. CO2 char gasification: A systematic review from 2014 to 2020[J]. Energy Conversion and Management: X, 2021, 10: 100060. |
8 | ROBERTS D G, HARRIS D J. Char gasification with O2, CO2, and H2O: Effects of pressure on intrinsic reaction kinetics[J]. Energy and Fuels, 2000, 14(2): 483-489. |
9 | LIU Guisu, TATE A G, BRYANT G W, et al. Mathematical modeling of coal char reactivity with CO2 at high pressures and temperatures[J]. Fuel, 2000, 79(10): 1145-1154. |
10 | GOMEZ Arturo, VARGAS Marlon, MAHINPEY Nader. A theoretical model to estimate steam and CO2 gasification rates based on feedstock characterization properties[J]. Fuel Processing Technology, 2016, 149: 187-194. |
11 | 张凡. 一种堡德河盆地次烟煤催化CO2气化的研究[D]. 北京: 中国矿业大学(北京), 2015. |
ZHANG Fan. Catalytic CO2 gasification of a sub-bituminous coal from powder river basin[D]. Beijing: China University of Mining & Technology, Beijing, 2015. | |
12 | PORADA Stanisław, CZERSKI Grzegorz, GRZYWACZ Przemysław, et al. Comparison of the gasification of coals and their chars with CO2 based on the formation kinetics of gaseous products[J]. Thermochimica Acta, 2017, 653: 97-105. |
13 | ZUO Haibin, GENG Weiwei, ZHANG Jianliang, et al. Comparison of kinetic models for isothermal CO2 gasification of coal char-biomass char blended char[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(4): 363-370. |
14 | LIU Zhengjian, WANG Guangwei, ZHANG Jianliang, et al. Study on CO2 gasification reactivity and structure characteristics of carbonaceous materials from the corex furnace[J]. Energy & Fuels, 2018, 32(5): 6155-6166. |
15 | LI Rongpeng, ZHANG Jianliang, WANG Guangwei, et al. Study on CO2 gasification reactivity of biomass char derived from high-temperature rapid pyrolysis[J]. Applied Thermal Engineering, 2017, 121: 1022-1031. |
16 | KOMAROVA Evgeniia, ABOSTEIF Ziad, GUHL Stefan, et al. Brown coal char CO2-gasification kinetics with respect to the char structure Part Ⅱ: Kinetics and correlations[J]. The Canadian Journal of Chemical Engineering, 2019, 97(1): 226-237. |
17 | ZHANG Fan, XU Deping, WANG Yonggang, et al. CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst[J]. Applied Energy, 2015, 145: 295-305. |
18 | GOMEZ Arturo, SILBERMANN Rico, MAHINPEY Nader. A comprehensive experimental procedure for CO2 coal gasification: Is there really a maximum reaction rate?[J]. Applied Energy, 2014, 124: 73-81. |
19 | TANNER Joanne, BHATTACHARYA Sankar. Kinetics of CO2 and steam gasification of Victorian brown coal chars[J]. Chemical Engineering Journal, 2016, 285: 331-340. |
20 | ZHANG Jianliang, WANG Guangwei, SHAO Jiugang, et al. A modified random pore model for the kinetics of char gasification[J]. BioResources, 2014, 9(2): 3497-3507. |
21 | WANG Guangwei, ZHANG Jianliang, SHAO Jiugang, et al. Experimental and modeling studies on CO2 gasification of biomass chars[J]. Energy, 2016, 114: 143-154. |
22 | LIU Hao, LUO Chunhua, KANEKO Masahiro, et al. Unification of gasification kinetics of char in CO2 at elevated temperatures with a modified random pore model[J]. Energy & Fuels, 2003, 17(4): 961-970. |
23 | ZHANG Yan, ASHIZAWA Masami, KAJITANI Shiro, et al. Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars[J]. Fuel, 2008, 87(4/5): 475-481. |
24 | GUPTA Ankita, THENGANE Sonal K, MAHAJANI Sanjay. CO2 gasification of char from lignocellulosic garden waste: Experimental and kinetic study[J]. Bioresource Technology, 2018, 263: 180-191. |
25 | KRAMB Jason, KONTTINEN Jukka, Alberto GÓMEZ-BAREA, et al. Modeling biomass char gasification kinetics for improving prediction of carbon conversion in a fluidized bed gasifier[J]. Fuel, 2014, 132: 107-115. |
26 | BETANCUR Mariluz, NATALIA ARENAS Cindy, DANIEL MARTÍNEZ Juan, et al. CO2 gasification of char derived from waste tire pyrolysis: Kinetic models comparison[J]. Fuel, 2020, 273: 117745. |
27 | SHA Xingzhong, CHEN Yigong, CAO Jianqin, et al. Effects of operating pressure on coal gasification[J]. Fuel, 1990, 69(5): 656-659. |
28 | NOZAKI Takao, ADSCHIRI Tadafumi, FUJIMOTO Kaoru. Coal char gasification under pressurized CO2 atmosphere[J]. Fuel, 1992, 71(3): 349-350. |
29 | ROBERTS D G, HARRIS D J. Char gasification in mixtures of CO2 and H2O: Competition and inhibition[J]. Fuel, 2007, 86(17/18): 2672-2678. |
30 | HUANG Zhimin, ZHANG Jiansheng, ZHAO Yong, et al. Kinetic studies of char gasification by steam and CO2 in the presence of H2 and CO[J]. Fuel Processing Technology, 2010, 91(8): 843-847. |
31 | EVERSON Raymond C, NEOMAGUS Hein W J P, KASAINI Henry, et al. Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards: Gasification with carbon dioxide and steam[J]. Fuel, 2006, 85(7/8): 1076-1082. |
32 | 霍威. 煤等含碳物质热解特性及气化反应特性模型化研究[D]. 上海: 华东理工大学, 2015 |
HUO Wei. Research on pyrolysis characteristics and gasification kinetics modeling of coal and other carbonaceous materials[D]. Shanghai: East China University of Science and Technology, 2015. | |
33 | ZOU Jian hui, ZHOU Zhi jie, WANG Fu chen, et al. Modeling reaction kinetics of petroleum coke gasification with CO2 [J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(7): 630-636. |
34 | THIELE E W. Relation between catalytic activity and size of particle[J]. Industrial & Engineering Chemistry, 1939, 31(7): 916-920. |
35 | HONG Jianhui, HECKER William C, FLETCHER Thomas H. Improving the accuracy of predicting effectiveness factors for mth order and Langmuir rate equations in spherical coordinates[J]. Energy & Fuels, 2000, 14(3): 663-670. |
36 | 陈甘棠, 陈建峰, 陈纪忠. 化学反应工程[M]. 4版. 北京: 化学工业出版社, 2021. |
CHEN Gantang, CHEN Jianfeng, CHEN Jizhong. Chemical reaction engineering[M]. 4th ed. Beijing: Chemical Industry Press, 2021. | |
37 | LIU Guisu, NIKSA Stephen. Coal conversion submodels for design applications at elevated pressures. Part Ⅱ. Char gasification[J]. Progress in Energy and Combustion Science, 2004, 30(6): 679-717. |
38 | 柳明. 高温气固反应特性与颗粒行为相互作用研究[D]. 上海: 华东理工大学, 2021. |
LIU Ming. Investigation on interactions between high-temperature gas solid reaction and particle behavior[D]. Shanghai: East China University of Science and Technology, 2021. | |
39 | SEIDER W D, WHITE III C W.Chemical reaction equilibrium analysis: Theory and algorithms[J]. AIChE Journal, 1985, 31(1): 176-176. |
40 | LOHA Chanchal, CHATTERJEE Pradip K, CHATTOPADHYAY Himadri. Performance of fluidized bed steam gasification of biomass—Modeling and experiment[J]. Energy Conversion and Management, 2011, 52(3): 1583-1588. |
41 | LOHA Chanchal, CHATTOPADHYAY Himadri, CHATTERJEE Pradip K. Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk[J]. Energy, 2011, 36(7): 4063-4071. |
42 | LA VILLETTA M, COSTA M, MASSAROTTI N. Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 71-88. |
43 | Maria PUIG-ARNAVAT, BRUNO Juan Carlos, CORONAS Alberto. Modified thermodynamic equilibrium model for biomass gasification: A study of the influence of operating conditions[J]. Energy & Fuels, 2012, 26(2): 1385-1394. |
44 | RAMOS Ana, MONTEIRO Eliseu, ROUBOA Abel. Numerical approaches and comprehensive models for gasification process: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 188-206. |
45 | PATRA Tapas Kumar, SHETH Pratik N. Biomass gasification models for downdraft gasifier: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 583-593. |
46 | Maria PUIG-ARNAVAT, BRUNO Joan Carles, CORONAS Alberto. Review and analysis of biomass gasification models[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2841-2851. |
47 | RODRIGUEZ-ALEJANDRO David A, Hyungseok NAM, MAGLINAO Amado L, et al. Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions[J]. Energy, 2016, 115: 1092-1108. |
48 | NÁSNER Albany Milena Lozano, LORA Electo Eduardo Silva, PALACIO José Carlos Escobar, et al. Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability[J]. Waste Management, 2017, 69: 187-201. |
49 | RENKEL Maria F, Norbert LÜMMEN. Supplying hydrogen vehicles and ferries in Western Norway with locally produced hydrogen from municipal solid waste[J]. International Journal of Hydrogen Energy, 2018, 43(5): 2585-2600. |
50 | SAHA Pretom, HELAL UDDIN M, TOUFIQ REZA M. A steady-state equilibrium-based carbon dioxide gasification simulation model for hydrothermally carbonized cow manure[J]. Energy Conversion and Management, 2019, 191: 12-22. |
51 | RUPESH S, MURALEEDHARAN C, ARUN P. ASPEN plus modelling of air-steam gasification of biomass with sorbent enabled CO2 capture[J]. Resource-Efficient Technologies, 2016, 2(2): 94-103. |
52 | SHABBAR Syed, JANAJREH Isam. Thermodynamic equilibrium analysis of coal gasification using Gibbs energy minimization method[J]. Energy Conversion and Management, 2013, 65: 755-763. |
53 | ROKNI Masoud. Thermodynamic analyses of municipal solid waste gasification plant integrated with solid oxide fuel cell and Stirling hybrid system[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7855-7869. |
54 | SAFARIAN Sahar, Rúnar UNNÞÓRSSON, RICHTER Christiaan. A review of biomass gasification modelling[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 378-391. |
55 | BARUAH Dipal, BARUAH D C. Modeling of biomass gasification: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 806-815. |
56 | 于遵宏, 王辅臣. 煤炭气化技术[M]. 北京: 化学工业出版社, 2010. |
YU Zunhong, WANG Fuchen. coal gasification technology[M]. Beijing: Chemical Industry Press, 2010. | |
57 | HOBBS Michael L, RADULOVIC Predrag T, Douglas SMOOT L. Modeling fixed-bed coal gasifiers[J]. AIChE Journal, 1992, 38(5): 681-702. |
58 | YOON H, WEI J, M-M DENN. A model for moving-bed coal gasification reactors[J]. AIChE Journal, 1978, 24: 885-903. |
59 | AMUNDSON Neal R, ARRI Luis Ernesto. Char gasification in a countercurrent reactor[J]. AIChE Journal, 1978, 24(1): 87-101. |
60 | MACAK Jiri, MALECHA Jiri. Mathematical model for the gasification of coal under pressure[J]. Industrial & Engineering Chemistry Process Design and Development, 1978, 17(1): 92-98. |
61 | EARL W, ISLAM K. Steady state model of a Lurgi type coal gasifier[C]//Chemeca 85: Innovation Process Resour. Ind., 13th Aust. Chem. Eng. Conf. 1985: 289-294. |
62 | THORSNESS Charles Bennett, KANG Sang Wook. Further development of a general-purpose, packed-bed model for analysis of underground coal gasification processes[R].Lawrence Livermore National Lab., CA (USA), 1985. |
63 | BHATTACHARYA Amitava, SALAM Lyle, DUDUKOVIC M P, et al. Experimental and modeling studies in fixed-bed char gasification[J]. Industrial & Engineering Chemistry Process Design and Development, 1986, 25(4): 988-996. |
64 | ADANEZ Juan, Garcia LABIANO F. Modeling of moving-bed coal gasifiers[J]. Industrial & Engineering Chemistry Research, 1990, 29(10): 2079-2088. |
65 | SOLOMON P R, HAMBLEN D G, CARANGELO R M, et al. General model of coal devolatilization[J]. Energy & Fuels, 1988, 2(4): 405-422. |
66 | KATO K, WEN C Y. Bubble assemblage model for fluidized bed catalytic reactors[J]. Chemical Engineering Science, 1969, 24(8): 1351-1369. |
67 | 肖显斌, 杨海瑞, 吕俊复, 等. 循环流化床燃烧数学模型[J]. 煤炭转化, 2002, 25(3): 11-16, 42. |
XIAO Xianbin, YANG Hairui, Junfu LÜ, et al. Review of mathematical modeling in circulating fluidized bed reacor[J]. Coal Conversion, 2002, 25(3): 11-16, 42. | |
68 | KIM Y J, 李大骥. 一带有进风管的内循环流化床煤气化反应炉中的模型(续)[J]. 洁净煤燃烧与发电技术, 2000(3): 46-55. |
KIM Y J, LI Daji. Model of an internal circulating fluidized bed coal gasification reactor with air inlet pipe (continued) [J]. Clean Coal Combustion and Power Generation Technology, 2000, (3): 46-55. | |
69 | 岑可法, 倪明江, 骆仲泱, 等. 循环流化床锅炉理论、设计与运行[M]. 北京: 中国电力出版社, 1998. |
CEN Kefa, Ni Mingjiang, Luo Zhongyang, et al. Theory, design and operation of circulating fluidized bed boiler[M]. Beijing: China Electric Power Press, 1998. | |
70 | 叶正才, 吴韬, 王辅臣, 等. 射流携带床气化炉内混合过程的研究[J]. 华东理工大学学报(自然科学版), 1998, 24(4):385-388. |
YE Zhengcai, WU Tao, WANG Fuchen, et al. Studies on the mixing process in jet-entrained flow bed gasifier[J]. Journal of East China University of Science and Technology, 1998, 24(4):385-388. | |
71 | LOLJA Saimir A, HAXHI Hajri, MARTIN Duncan J. Correlations in the properties of Albanian coals[J]. Fuel, 2002, 81(9): 1095-1100. |
72 | 刘新兵, 陈茺. 煤灰熔融性的研究[J]. 煤化工, 1995, 23(2): 48-52, 47. |
LIU Xinbing, CHEN Chong. Study on the fusibility of coal ash[J]. Coal Chemical Industry, 1995, 23(2): 48-52, 47. | |
73 | 张德祥, 龙永华, 高晋生, 等. 煤灰中矿物的化学组成与灰熔融性的关系[J]. 华东理工大学学报, 2003, 29(6): 590-594. |
ZHANG Dexiang, LONG Yonghua, GAO Jinsheng, et al. Relationship between the coal ash fusibility and its chemical composition[J]. Journal of East China University of Science and Technology, 2003, 29(6): 590-594. | |
74 | WINEGARTNER E C, RHODES B T. An empirical study of the relation of chemical properties to ash fusion temperatures[J]. Journal of Engineering for Power, 1975, 97(3): 395-403. |
75 | SEGGIANI M. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J]. Fuel, 1999, 78(9): 1121-1125. |
76 | 陈文敏, 姜宁. 煤灰成分和煤灰熔融性的关系[J]. 洁净煤技术, 1996, 2(2): 34-37. |
CHEN Wenmin, JIANG Ning. Relation between the coal ash composition and fusibility[J]. Clean Coal Technology, 1996, 2(2): 34-37. | |
77 | XU Jie, LIU Xia, LI Dexia, et al. Prediction model for flow temperature of coal ash [J]. 燃料化学学报 (中英文), 2012, 40(12): 1415-1421. |
78 | 徐志明, 郑娇丽, 文孝强. 基于偏最小二乘回归的灰熔点预测[J]. 动力工程学报, 2010, 30(10): 788-792, 803. |
XU Zhiming, ZHENG Jiaoli, WEN Xiaoqiang. Prediction for ash fusion point based on partial least square regression[J]. Journal of Chinese Society of Power Engineering, 2010, 30(10): 788-792, 803. | |
79 | 张玉磊, 尹永志, 王希闯. 煤灰成分预测灰熔点的模型[J]. 中氮肥, 2012(6): 10-12. |
ZHANG Yulei, YIN Yongzhi, WANG Xichuang. Component analysis based ash fusion point prediction model[J]. M-Sized Nitrogenous Fertilizer Progress, 2012(6): 10-12. | |
80 | 刘硕, 周安宁, 杨伏生, 等. 煤灰流动温度的预测研究[J]. 煤炭与化工, 2017, 40(3): 20-24. |
LIU Shuo, ZHOU Anning, YANG Fusheng, et al. Study on prediction of coal ash flow temperature[J]. Coal and Chemical Industry, 2017, 40(3): 20-24. | |
81 | HUGGINS Frank E, KOSMACK Deborah A, HUFFMAN Gerald P. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams[J]. Fuel, 1981, 60(7): 577-584. |
82 | Evgueni JAK. Prediction of coal ash fusion temperatures with the F*A*C*T thermodynamic computer package[J]. Fuel, 2002, 81(13): 1655-1668. |
83 | SONG Wen J, TANG Li H, ZHU Xue D, et al. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy & Fuels, 2009, 23(4): 1990-1997. |
84 | SHI Wenju, LAABS Marcel, Markus REINMÖLLER, et al. The fusion mechanism of complex minerals mixture and prediction model for flow temperature of coal ash for gasification[J]. Fuel, 2021, 305: 121448. |
85 | SONG Wenjia, DONG Yanhe, WU Yongqiang, et al. Prediction of temperature of critical viscosity for coal ash slag[J]. AIChE Journal, 2011, 57(10): 2921-2925. |
86 | YAN Tinggui, BAI Jin, KONG Lingxue, et al. Improved prediction of critical-viscosity temperature by fusion behavior of coal ash[J]. Fuel, 2019, 253: 1521-1530. |
[1] | MA Dong, XIE Guilin, TIAN Zhihua, WANG Qinhui, ZHANG Jianguo, SONG Huilin, ZHONG Jin. Analysis of high temperature reduction process of phosphogypsum by coal gasification fine slag in fluidized bed [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3479-3491. |
[2] | LI Yanan, GUO Kai, WANG Jiaqi, WU Yaning. Comparison of phenol degradation by persulfate and peroxymonosulfate activated with coal gasification slag [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3503-3512. |
[3] | ZHOU Qiuming, NIU Congcong, LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng. Promoting CO2 hydrogenation to methanol through product transformation and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2776-2785. |
[4] | PANG Shuxin, WANG Hao, WANG Jianyu, ZHU Kake, LIU Zhicheng. Thermodynamic calculation of methane combined reforming to synthesis gas process based on Aspen Plus [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2890-2900. |
[5] | WANG Debin, LIN Mengyu, YANG Xue, DONG Dianquan. Preparation and adsorption properties of zinc-doped titanium-based cesium ion sieves [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1953-1961. |
[6] | GAO Zenglin, ZHANG Qian, GAO Chenming, YANG Kai, GAO Zhihua, HUANG Wei. Extraction and separation of carbon from coal water slurry gasification coarse slag by waterflow classifier [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1576-1583. |
[7] | WANG Kexu, ZHANG Xiangping, WANG Hongyan, BAI Yan, WANG Hui. Progress on current-responsive catalysts and their applications in intensifying typical reactions [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 49-59. |
[8] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[9] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[10] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[11] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
[12] | ZHAO Jingbin, WANG Yanfu, WANG Tao, MA Weikai, WANG Chen. Vulnerability assessment of storage tanks based on Monte Carlo simulation and dynamic event tree [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2751-2759. |
[13] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
[14] | WANG Xiaoyue, ZHANG Weimin, YAO Zhengyang, GUO Xiaohong, LI Congming. Research progress of reverse water gas shift reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1583-1594. |
[15] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |