| [1] |
孙峰. 国内外化工反应事故统计与分析[J]. 安全、健康和环境, 2021, 21(4): 6-11.
|
|
SUN Feng. Statistics and analysis of chemical reaction accidents in China and abroad[J]. Safety Health & Environment, 2021, 21(4): 6-11.
|
| [2] |
朱益, 王浩, 陈利平, 等. 基于数值计算方法计算最大反应速率到达时间[J]. 化工学报, 2019, 70(1): 379-387.
|
|
ZHU Yi, WANG Hao, CHEN Liping, et al. Calculate time to maximum rate under adiabatic condition by numerical calculation method[J]. CIESC Journal, 2019, 70(1): 379-387.
|
| [3] |
天津港“ 8·12”特别重大火灾爆炸事故调查报告公布[J]. 消防界(电子版), 2016(2): 35-40.
|
|
The investigation report on the “8.12” major fire and explosion accident in Tianjin Port has been released[J]. Xiao Fang Jie (Electronic Version), 2016(2): 35-40.
|
| [4] |
王书涵. 江苏响水天嘉宜化工有限公司“3·21”特别重大爆炸事故[J]. 现代班组, 2020(8): 29.
|
|
WANG Shuhan. Jiangsu Xiangshui Tianjiayi Chemical Co., Ltd. experienced a particularly serious explosion accident on March 21st[J]. Modern Group, 2020(8): 29.
|
| [5] |
国家安全监管总局关于加强精细化工反应安全风险评估工作的指导意见[J]. 国家安全生产监督管理总局国家煤矿安全监察局公告, 2017(2): 13-16.
|
|
Guiding Opinions of the State Administration of Work Safety on Strengthening the Safety Risk Assessment of Fine Chemical Reactions[J]. Announcement of the State Administration of Work Safety and the State Administration of Coal Mine Safety Supervision, 2017(2): 13-16.
|
| [6] |
国家市场监督管理总局, 国家标准化管理委员会. 精细化工反应安全风险评估规范: [S]. 2022.
|
|
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Specification for safety risk assessment of fine chemical reactions: [S]. 2022.
|
| [7] |
STOESSEL Francis. Thermal safety of chemical processes[M]. 2nd ed. German: Wiley, 2020.
|
| [8] |
ZHANG Haoran, BAI Mingqi, WANG Xinyu, et al. Thermal runaway incidents-a serious cause of concern: An analysis of runaway incidents in China[J]. Process Safety and Environmental Protection, 2021, 155: 277-286.
|
| [9] |
BARTON J A, NOLAN P F. Incidents in the chemical industry due to thermal-runaway chemical reactions[J]. Hazards X: Process Safety in Fine and Speciality Chemical Plants, 1989, 115: 3-18.
|
| [10] |
杨钰涛, 王达, 吴展华, 等. Gygax冷却失效模型在化工过程反应安全风险评估应用的局限性[J]. 化工进展, 2024, 43(11): 6379-6389.
|
|
YANG Yutao, WANG Da, WU Zhanhua, et al. Limitations of the application of the Gygax cooling failure model for reactivity hazards assessment of chemical processes[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6379-6389.
|
| [11] |
王丹. 危险工艺硝化工艺的研究现状与技术进展[J]. 山东化工, 2021, 50(6): 86-90.
|
|
WANG Dan. Research status and technical progress of dangerous process nitrification process[J]. Shandong Chemical Industry, 2021, 50(6): 86-90.
|
| [12] |
TOWNSEND D I, TOU J C. Thermal hazard evaluation by an accelerating rate calorimeter[J]. Thermochimica Acta, 1980, 37(1): 1-30.
|
| [13] |
盛敏, 李玮晔, 王芳芳, 等. 一种高能化学品爆炸热量的测量方法及应用: CN119165005A[P], 2024-12-20.
|
|
SHENG Min, LI Weiye, WANG Fangfang, et al. A method for measuring explosive heat of high-energy chemicals and its application: CN119165005A[P], 2024-12-20.
|
| [14] |
吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382.
|
|
WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382.
|
| [15] |
ZHANG Chunyuan, JIN Shaohua, JI Jiawen, et al. Thermal hazard assessment of TNT and DNAN under adiabatic condition by using accelerating rate calorimeter (ARC)[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(1): 89-93.
|
| [16] |
KOCH Ernst-Christian, WEISER Volker, ROTH Evelin. 2,4,6-trinitrotoluene: A surprisingly insensitive energetic fuel and binder in melt-cast decoy flare compositions[J]. Angewandte Chemie International Edition, 2012, 51(40): 10038-10040.
|
| [17] |
KSIĄŻCZAK A, KSIĄŻCZAK T. Influence of DSC measurement conditions on kinetic parameters of thermal decomposition of 2,4,6-trinitrotoluene[J]. Journal of Thermal Analysis and Calorimetry, 2000, 60(1): 25-33.
|
| [18] |
QIU Yang, GUO Fei, HURT Robert, et al. Explosive thermal reduction of graphene oxide-based materials: Mechanism and safety implications[J]. Carbon, 2014, 72: 215-223.
|
| [19] |
ELBASUNEY Sherif, Gaber ZAKY M, RADWAN Mostafa, et al. Synthesis of CuO nanocrystals supported on multiwall carbon nanotubes for nanothermite applications[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(4): 1407-1416.
|
| [20] |
LI Jin-Shuh, CHEN Jian-Jing, HWANG Chyi-Ching, et al. Study on thermal characteristics of TNT based melt-cast explosives[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(10): 1270-1281.
|
| [21] |
盛敏, 田均均, 王芳芳, 等. 基于临界半衰期的连续流反应热安全风险评估方法[J]. 含能材料, 2024, 32(3): 298-311.
|
|
SHENG Min, TIAN Junjun, WANG Fangfang, et al. Thermal safety risk assessment method based on critical reaction half-life for continuous flow reactors[J]. Chinese Journal of Energetic Materials, 2024, 32(3): 298-311.
|
| [22] |
JOHNSON Robert W, RUDY Steven W, UNWIN Stephen D. Essential practices for managing chemical reactivity hazards[M]. Newark, United States: John Wiley & Sons, 2003: 193.
|
| [23] |
华东理工大学. 反应安全中心实验测试数据库[Z]. https://rcsc.ecust.edu.cn/index.php?id=test-database.
|
|
East China University of Science and Technology. Reactive chemical safety center testing database[Z]. .
|
| [24] |
ROWE Stephen M. Thermal stability: A review of methods and interpretation of data[J]. Organic Process Research & Development, 2002, 6(6): 877-883.
|
| [25] |
FRURIP David J. Selection of the proper calorimetric test strategy in reactive chemicals hazard evaluation[J]. Organic Process Research & Development, 2008, 12(6): 1287-1292.
|
| [26] |
YOSHIDA T, YOSHIZAWA F, ITO M, et al. Prediction of fire and explosion hazards of reactive chemicals (Part 1). Estimation of explosive properties of self-reactive chemicals from SC-DSC data[J]. Kogyo Kayaku(Japan), 1987, 48(5): 311-316.
|