Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 3647-3659.DOI: 10.16085/j.issn.1000-6613.2024-0043
• Column: Thermochemical Reaction Engineering Technology • Previous Articles Next Articles
LI Yawei1(
), HAN Bingqiang1(
), YAN Wen2, HUANG Ao2, LIU Hao1, ZHU Tianbin2, LIAO Ning2, CHEN Junfeng1, XU Yibiao2
Received:2024-01-08
Revised:2024-03-21
Online:2024-08-14
Published:2024-07-25
Contact:
HAN Bingqiang
李亚伟1(
), 韩兵强1(
), 鄢文2, 黄奥2, 刘浩1, 朱天彬2, 廖宁2, 陈俊峰1, 徐义彪2
通讯作者:
韩兵强
作者简介:李亚伟(1966—),男,博士,教授,研究方向为耐火材料。E-mail:liyawei@wust.edu.cn。
CLC Number:
LI Yawei, HAN Bingqiang, YAN Wen, HUANG Ao, LIU Hao, ZHU Tianbin, LIAO Ning, CHEN Junfeng, XU Yibiao. Typical applications of thermochemical reactions in refractory[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3647-3659.
李亚伟, 韩兵强, 鄢文, 黄奥, 刘浩, 朱天彬, 廖宁, 陈俊峰, 徐义彪. 耐火材料热化学反应典型应用技术发展[J]. 化工进展, 2024, 43(7): 3647-3659.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0043
| 1 | 李楠,顾华志,赵惠忠. 耐火材料学[M]. 2版. 北京: 冶金工业出版社,2022. |
| LI Nan, GU Huazhi, ZHAO Huizhong. Refractory science[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2022. | |
| 2 | 杉田清. 钢铁用耐火材料: 向高温挑战的记录[M]. 北京: 冶金工业出版社, 2004. |
| KIYOSHI SUGITA. Refractory materials for iron and steel: Record of high temperature challenge[M]. Beijing: Metallurgical Industry Press, 2004. | |
| 3 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2022, 10(9): nwac217. |
| 4 | GUO Zhancheng, WANG Shiwei, BAI Dingrong. Engineering thermochemistry: The science critical for the paradigm shift toward carbon neutrality[J]. Resources Chemicals and Materials, 2023, 2(4): 331-334. |
| 5 | HAN Zhennan, JIA Xin, SONG Xingfei, et al. Engineering thermochemistry to cope with challenges in carbon neutrality[J]. Journal of Cleaner Production, 2023, 416: 137943. |
| 6 | HE Mingyuan, ZHANG Kun, GUAN Yejun, et al. Green carbon science: Fundamental aspects[J]. National Science Review, 2023, 10(9): nwad046. |
| 7 | 北京钢铁学院《中国冶金简史》编写小组. 中国冶金简史[M]. 北京: 科学出版社, 1978. |
| Beijing Institute of Iron and Steel, "A brief history of metallurgy in China" compilation group. A brief history of metallurgy in China[M]. Beijing: Science Press, 1978. | |
| 8 | 赵青云, 李京华, 韩汝玢, 等. 巩县铁生沟汉代冶铸遗址再探讨[J]. 考古学报, 1985(2): 157-183, 267-270. |
| ZHAO Qingyun, LI Jinghua, HAN Rupin, et al. Further exploration of the Han Dynasty smelting and casting site in Tieshenggou, Gongxian[J]. Archaeological Journal, 1985 (2): 157-183, 267-270. | |
| 9 | 何堂坤, 林育炼, 叶万松, 等. 洛阳坩埚附着钢的初步研究[J]. 自然科学史研究,1985,4(1): 59-63, 100. |
| HE Tangkun, LIN Yulian, YE Wansong, et al. A preliminary study of crucible attached steel in Luoyang[J]. Studies in the History of Natural Sciences. 1985, 4(1): 59-63, 100. | |
| 10 | SARKAR RITWIK. Refractory technology:fundamentals and applications[M]. CRC Press, 2017. |
| 11 | 宋作人. 玻璃熔窑用熔铸耐火材料[M]. 郑州:河南科学技术出版社,1991. |
| SONG Zuoren. Fused cast refractories for glass melting kilns [M]. Zhengzhou: Henan Science and Technology Press, 1991. | |
| 12 | 郁国城. 碱性耐火材料理论基础[M]. 上海: 上海科学技术出版社, 1982. |
| YU Guocheng. Basic refractory's theoretical basis[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1982. | |
| 13 | 张文杰,李楠. 碳复合耐火材料[M]. 北京: 科学出版社,1990. |
| ZHANG Wenjie, Li Nan. Carbon composite refractory[M]. Beijing: Science Press, 1990. | |
| 14 | 戈福祥, 徐宗涑, 徐廷荃. 四川耐火材料之研究[J]. 工程, 1940, 13(4): 49-96. |
| GE Fuxiang, XU Zongsu, XU Tingquan. Research on refractory materials in Sichuan[J]. Engineering, 1940,13(4): 49-96. | |
| 15 | 谭丙煜. 耐火砖制造的研讨[J]. 湖大工程, 1947(1): 143-153. |
| TAN Bingyu. Research on firebrick manufacturing[J]. Hunan University Engineering, 1947(1): 143-153. | |
| 16 | 钟香崇,李广平. 高铝矾土加热过程的变化和烧结机理,硅酸盐学报,1964(4):261-270. |
| ZHONG Xiangchong, LI Guangping. Heat changes and sintering mechanism of Chinese high alumina clays[J]. Journal of the Chinese Ceramic Society, 1964(4): 261-270. | |
| 17 | 李楠, 梁永和. 李楠耐火材料论文选[M]. 武汉:湖北科学技术出版社,2004. |
| LI Nan, LIANG Yonghe. Li Nan Selected Papers on Refractory Materials[M]. Wuhan: Hubei Science and Technology Press, 2004. | |
| 18 | EDWARDS Howell G M. Porcelain to silica bricks: The extreme ceramics of William Weston Young (1776-1847)[M]. Springer, 2019. |
| 19 | SARKAR Ritwik. Refractory technology: Fundamentals and applications[M]. CRC Press, 2017. |
| 20 | FENNER C N. The stability relations of the silica minerals[J]. American Journal of Science, 1913, 36(214): 331-384. |
| 21 | ROSS D W. Silica Refractories: Factors affecting their quality and methods of testing the raw materials and finished wares[J]. Department of Commerce Technologic Paper of the Bureau of Standards, 1919, 116. |
| 22 | 郑德胜, 薄钧, 甘菲芳, 等. 高导热硅砖在焦炉上的应用[J]. 耐火材料, 2017, 51(4): 287-288. |
| ZHENG Desheng, BO Jun, GAN Feifang, et al. Application of high thermal conductivity silicon brick in coke oven[J]. Naihuo Cailiao. 2017, 51(4): 287-288. | |
| 23 | NUNES DOS SANTOS Wilson, BALDO João Baptista, TAYLOR Roy. Effect of SiC on the thermal diffusivity of silica-based materials[J]. Materials Research Bulletin, 2000, 35(13): 2091-2100. |
| 24 | 张会军. 新型矿化剂和添加剂对硅砖性能的影响[D]. 郑州: 郑州大学, 2015. |
| ZHANG Huijun. Influence of A new mineralization agent and additives onproperties of silica brick[D]. Zhengzhou: Zhengzhou University, 2015. | |
| 25 | 练伟. 煤矸石为原料制备莫来石及复相陶瓷的力学性能研究[D]. 淮南: 安徽理工大学, 2021. |
| LIAN Wei. Mechanical properties of mullite and multiphase ceramics prepared from coal gangue[D]. Huainan: Anhui University of Science & Technology, 2021. | |
| 26 | 王章. 煤系高岭土制备多孔莫来石工艺、组织和性能的研究[D]. 徐州: 中国矿业大学, 2017. |
| WANG Zhang. Study on preparation methods, microstructure and properties of porous mullite from coal-series Kaolin[D]. Xuzhou: China University of Mining and Technology, 2017. | |
| 27 | 崔 等. 煤系高岭土高温煅烧单晶相莫来石产品的工艺条件[J]. 耐火材料, 2011, 45(3): 197-199. |
| CUI Deng. High temperature calcining process of coal series kaolin preparing single crystal mullite[J]. Naihuo Cailiao, 2011, 45(3): 197-199. | |
| 28 | REN Bo, LI Yawei, JIN Shengli, et al. Correlation between chemical composition and alkali attack resistance of bauxite-SiC refractories in cement rotary kiln[J]. Ceramics International, 2017, 43(16): 14161-14167. |
| 29 | KOSAJAN Vorada, WEN Zongguo, ZHENG Kaifang, et al. Municipal solid waste (MSW) co-processing in cement kiln to relieve China's Msw treatment capacity pressure[J]. Resources, Conservation and Recycling, 2021, 167: 105384. |
| 30 | REN Bo, SANG Shaobai, LI Yawei, et al. Correlation of pore structure and alkali vapor attack resistance of bauxite-SiC composite refractories[J]. Ceramics International, 2015, 41(10): 14674-14683. |
| 31 | WANG Dong, LI Yong, LI Yang, et al. Optimizing performance of magnesia-spinel brick used at cement rotary kiln[J]. Advanced Materials Research, 2011, 250/251/252/253: 588-594. |
| 32 | HONG Shan shan, LI Yong. Investigation on the creep property of theoretical composition magnesia alumina spinel bricks[J]. Advanced Materials Research, 2013, 690/691/692/693: 654-657. |
| 33 | LIN Xiaoli, YAN Wen, MA Sanbao, et al. Corrosion and adherence properties of cement clinker on porous periclase-spinel refractory aggregates with varying spinel content[J]. Ceramics International, 2017, 43(6): 4984-4991. |
| 34 | MA Sanbao, YAN Wen, Stefan SCHAFFÖNER, et al. Influence of magnesium aluminate spinel powder content on cement clinker corrosion and adherence properties of lightweight periclase-spinel refractories[J]. Ceramics International, 2017, 43(18): 17026-17031. |
| 35 | WU Guiyuan, YAN Wen, Stefan SCHAFFÖNER, et al. Effect of magnesium aluminate spinel content of porous aggregates on cement clinker corrosion and adherence properties of lightweight periclase-spinel refractories[J]. Construction and Building Materials, 2018, 185: 102-109. |
| 36 | WU Guiyuan, YAN Wen, Stefan SCHAFFÖNER, et al. A comparative study on the microstructures and mechanical properties of a dense and a lightweight magnesia refractories[J]. Journal of Alloys and Compounds, 2019, 796: 131-137. |
| 37 | EWAIS Emad Mohamed M. Carbon based refractories[J]. Journal of the Ceramic Society of Japan, 2004, 112(1310): 517-532. |
| 38 | LUZ A P, LEITE F C, BRITO M A M, et al. Slag conditioning effects on MgO-C refractory corrosion performance[J]. Ceramics International, 2013, 39(7): 7507-7515. |
| 39 | 朱天彬, 李亚伟, 桑绍柏, 等. 镁碳质耐火材料的抗氧化研究进展[J]. 耐火材料, 2013, 47(5): 384-387, 391. |
| ZHU Tianbin, LI Yawei, SANG Shaobai, et al. Progress on oxidation resistance of MgO-C refractories[J]. Refractories, 2013, 47(5): 384-387, 391. | |
| 40 | 周婷, 余俊, 黄学忠, 等. AOD炉渣对MgO-C砖的侵蚀机理研究[J]. 硅酸盐通报, 2023, 42(1): 338-344. |
| ZHOU Ting, YU Jun, HUANG Xuezhong, et al. Study on corrosion mechanism of AOD slag on MgO-C brick[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 338-344. | |
| 41 | ZHANG S, LEE W E. Use of phase diagrams in studies of refractories corrosion[J]. International Materials Reviews, 2000, 45(2): 41-58. |
| 42 | SI Yaochen, ZHANG Fan, LI Xin, et al. Thermodynamic calculation and microstructure characterization of spinel formation in MgO-Al2O3-C refractories[J]. Ceramics International, 2022, 48(11): 15525-15532. |
| 43 | CHEN Qilong, ZHU Tianbin, LI Yawei, et al. Enhanced performance of low-carbon MgO-C refractories with nano-sized ZrO2-Al2O3 composite powder[J]. Ceramics International, 2021, 47(14): 20178-20186. |
| 44 | KIM Yelim, KASHIWAYA Yoshiaki, CHUNG Yongsug. Effect of varying Al2O3 contents of CaO-Al2O3-SiO2 slags on lumped MgO dissolution[J]. Ceramics International, 2020, 46(5): 6205-6211. |
| 45 | GUO Weijie, ZHU Tianbin, ZHAO Xu, et al. Improved slag corrosion resistance of MgO-C refractories with calcium magnesium aluminate aggregate and silicon carbide: Corrosion behavior and thermodynamic simulation[J]. Journal of the European Ceramic Society, 2024, 44(1): 496-509. |
| 46 | ANEZIRIS Christos G, DUDCZIG Steffen, EMMEL Marcus, et al. Reactive filters for steel melt filtration[J]. Advanced Engineering Materials, 2013, 15(1/2): 46-59. |
| 47 | DUDCZIG S, ANEZIRIS C G, EMMEL M, et al. Characterization of carbon-bonded alumina filters with active or reactive coatings in a steel casting simulator[J]. Ceramics International, 2014, 40(10): 16727-16742. |
| 48 | EMMEL Marcus, ANEZIRIS Christos G, SPONZA Francesco, et al. In situ spinel formation in Al2O3-MgO-C filter materials for steel melt filtration[J]. Ceramics International, 2014, 40(8): 13507-13513. |
| 49 | LIU Ying, YAN Wen, CHEN Zhe, et al. Preparation of high performance MgO ceramic filter and its interaction with molten steel: Effect of porous MgO powder[J]. Journal of the European Ceramic Society, 2023, 43(8): 3794-3803. |
| 50 | LIU Ying, YAN Wen, LIU Yu, et al. Effect of α-Al2O3 content on microstructures, mechanical properties and purification efficiency on molten steel of MgO-based filters[J]. Journal of the European Ceramic Society, 2023, 43(14): 6516-6526. |
| 51 | PENG Wangding, CHEN Zhe, YAN Wen, et al. Microstructure and properties of ceramic filter containing porous MgO coating and its filtration of Al2O3 inclusions in molten steel[J]. Ceramics International, 2024, 50(1): 218-229. |
| 52 | YAN Wen, CHEN Zhe, LI Guangqiang, et al. Preparation and enhanced mechanical properties of novel Al2O3-C ceramic filter reinforced by microporous powder and SiC whiskers[J]. Journal of the American Ceramic Society, 2024, 107(4): 2725-2737. |
| 53 | 姜金宁. 耐火材料工业热工过程及设备[M]. 北京: 冶金工业出版社, 1984. |
| JIANG Jinning. Thermal process and equipment of refractory industry[M]. Beijing: Metallurgical Industry Press, 1984. | |
| 54 | 张美杰, 程玉保. 无机非金属材料工业窑炉[M]. 北京: 冶金工业出版社, 2008. |
| ZHANG Meijie, CHENG Yubao. Inorganic non-metallic materials industrial kiln[M]. Beijing: Metallurgical Industry Press, 2008. | |
| 55 | 刘麟瑞, 林彬荫. 工业窑炉用耐火材料手册[M]. 北京: 冶金工业出版社, 2001. |
| LIU Linrui, LIN Binyin. Manual of refractories for industrial furnaces[M]. Beijing: Metallurgical Industry Press, 2001. | |
| 56 | TRINKS W, MAWHINNEY M H, SHANNON R A, et al. Industrial furnaces[M]. Hoboken: Wiley, 2003. |
| 57 | GUPTA R C. Fuels, furnaces and refractories[J]. Oxford: Pergamon Press, 1977. |
| [1] | ZHOU Yincong, XIONG Xiaohe, GUO Fuwen, ZHANG Yinan, TAN Houzhang. Thermal corrosion behavior of 20G and T91 steels in molten salt corrosion environments containing sulfur and chlorine elements [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 541-550. |
| [2] | ZHANG Yi, MA Lijiao, DING Yudong, WANG Hong, CHENG Min, ZHU Xun, LIAO Qiang. Impact of water on metal corrosion characteristics of MEA-DMF absorbent in flue gas CO2 capture [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 551-558. |
| [3] | CUI Ruizhuo, LI Shuangxi, LI Fangjun, ZHANG Tianhao, JIA Xiangji. Friction wear and temperature deformation field analysis of mechanical seal for dry friction kettle with SiC-graphite matching pair [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 58-73. |
| [4] | GUO Xuhao, YE Yiming, QI Xin, HU Shilin, ZHANG Pingzhu. Simulation of enrichment of 10B by cryogenic distillation of boron trifluoride [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 74-83. |
| [5] | MA Runmei, HUANG Lele, LI Shuangxi, QI Zhicheng, YAN Xinxin, ZHAO Xinni. Analysis and experimental study on sealing performance of nozzle seal under high temperature and high pressure vibration conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 8-18. |
| [6] | XU Haitian, XU Yanying, ZHAI Ming. Boiling heat transfer simulation using lattice Boltzmann model with flow velocity boundary conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 84-91. |
| [7] | GONG Chengcheng, ZHANG Libiao, HAN Weida. Analysis and optimization of refrigerant maldistribution in heat exchange tubes of dry evaporators for ultra-low temperature screw chiller units [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 38-50. |
| [8] | ZHANG Hongwu, HU Qihui, ZHAO Xuefeng, LI Yuxing, MENG Lan, ZHANG Lijun, ZHU Jianlu, WANG Wuchang. Research progress on leakage risk of onshore CO2 pipeline [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 462-477. |
| [9] | GU Jiajin, CHEN Caixia, XIA Zihong. Direct numerical simulation of the rising motion of multiple bubbles in a gas-liquid bubbling tower [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 51-57. |
| [10] | WU Jinyi, ZHAO Ruikai, DENG Shuai, ZHANG Jiaqi, GAO Chunxiao, LIU Weihua, ZHAO Li. Numerical simulation of temperature swing adsorption for SF6 recovery from mixed insulating gas [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 19-28. |
| [11] | ZHOU Jinghao, ZHANG Chaoyang, HU Haoxing, WANG Siming, LIU Jingyuan, WEI Guanghua. Numerical analysis of gas transfer in microporous layer of PEMFC based on lattice Boltzmann method [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4898-4907. |
| [12] | WANG Jilong, HE Lei, SU Yi, TANG Zhaofan. Numerical simulation on natural gas flameless combustion(MILD) in tail gas incinerator furnaces [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4928-4936. |
| [13] | FU Hongmei, LIU Dinghua, LIU Xiaoqin. Research progress on the separation of aromatic isomers using MOF materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5006-5017. |
| [14] | ZHANG Bo, MA Jun, ZHANG Weilong, JIA Shichuan, ZHANG Zhifei, DING Yu, PAN Youhua, WANG Junyu, ZHANG Lanhe. Preparation of α-ZrP/PDMS superhydrophobic anti-corrosion coating and corrosion resistance performance [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5130-5139. |
| [15] | ZUO Qibin, ZHANG Han, SUN Chuanfu, HU Guilin, XIA Yuzhen. Application of nickel/graphene coating on foam metal flow field of PEMFC [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5195-5201. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |