Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 19-28.DOI: 10.16085/j.issn.1000-6613.2024-2129
• Chemical processes and equipment • Previous Articles Next Articles
WU Jinyi1(
), ZHAO Ruikai1,2(
), DENG Shuai1,2, ZHANG Jiaqi1, GAO Chunxiao1, LIU Weihua1, ZHAO Li1
Received:2024-12-31
Revised:2025-03-17
Online:2025-11-24
Published:2025-10-25
Contact:
ZHAO Ruikai
武锦怡1(
), 赵睿恺1,2(
), 邓帅1,2, 张家麒1, 高春霄1, 刘葳桦1, 赵力1
通讯作者:
赵睿恺
作者简介:武锦怡(2003—),女,硕士研究生,研究方向为SF6吸附分离回收。E-mail:wjinyi124@163.com。
基金资助:CLC Number:
WU Jinyi, ZHAO Ruikai, DENG Shuai, ZHANG Jiaqi, GAO Chunxiao, LIU Weihua, ZHAO Li. Numerical simulation of temperature swing adsorption for SF6 recovery from mixed insulating gas[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 19-28.
武锦怡, 赵睿恺, 邓帅, 张家麒, 高春霄, 刘葳桦, 赵力. 混合绝缘气体变温吸附分离回收SF6的数值模拟[J]. 化工进展, 2025, 44(S1): 19-28.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2129
| SF6物性参数 | 数值 |
|---|---|
| 密度ρg/kg∙m-3 | 6.07 |
| 摩尔质量M/g∙mol-1 | 146.07 |
| 热导率kg/W∙m-1∙K-1 | 0.014 |
| 比热容cp,g/J∙kg-1∙K-1 | 650 |
| 动力黏度μ/kg∙m-1∙s-1 | 1.58×10-5 |
| SF6物性参数 | 数值 |
|---|---|
| 密度ρg/kg∙m-3 | 6.07 |
| 摩尔质量M/g∙mol-1 | 146.07 |
| 热导率kg/W∙m-1∙K-1 | 0.014 |
| 比热容cp,g/J∙kg-1∙K-1 | 650 |
| 动力黏度μ/kg∙m-1∙s-1 | 1.58×10-5 |
| 参数 | 数值 |
|---|---|
| 壁面厚度δ/m | 0.001 |
| 密度ρw/kg∙m-3 | 8030 |
| 比热容cp,w/J∙kg-1∙K-1 | 502.48 |
| 参数 | 数值 |
|---|---|
| 壁面厚度δ/m | 0.001 |
| 密度ρw/kg∙m-3 | 8030 |
| 比热容cp,w/J∙kg-1∙K-1 | 502.48 |
| 吸附剂性能 | UIO-66[ | 13X[ | AC[ | Mg-MOF-74[ |
|---|---|---|---|---|
| 密度ρs/kg∙m-3 | 380 | 1099.5 | 592 | 911 |
| 比热容cp,s/J∙kg-1∙K-1 | 750 | 920 | 887 | 900 |
| 孔隙率ε | 0.246 | 0.565 | 0.36 | 0.7417 |
| 传热系数λs/W∙m-1∙K-1 | 0.32 | 0.15 | 0.3 | 0.3 |
| 颗粒直径d/mm | 0.36 | 1 | 2 | 0.2 |
| 黏性阻力系数α-1/m-2 | 4.420×1010 | 1.574×108 | 3.292×108 | 6.132×108 |
| 惯性阻力系数C2/m-1 | 4.924×105 | 8.441×103 | 2.401×104 | 1.108×104 |
| 吸附剂性能 | UIO-66[ | 13X[ | AC[ | Mg-MOF-74[ |
|---|---|---|---|---|
| 密度ρs/kg∙m-3 | 380 | 1099.5 | 592 | 911 |
| 比热容cp,s/J∙kg-1∙K-1 | 750 | 920 | 887 | 900 |
| 孔隙率ε | 0.246 | 0.565 | 0.36 | 0.7417 |
| 传热系数λs/W∙m-1∙K-1 | 0.32 | 0.15 | 0.3 | 0.3 |
| 颗粒直径d/mm | 0.36 | 1 | 2 | 0.2 |
| 黏性阻力系数α-1/m-2 | 4.420×1010 | 1.574×108 | 3.292×108 | 6.132×108 |
| 惯性阻力系数C2/m-1 | 4.924×105 | 8.441×103 | 2.401×104 | 1.108×104 |
| 吸附剂材料 | 气体种类 | qm/mol·kg-1 | k0/Pa-1 | n | ΔH/J·mol-1 |
|---|---|---|---|---|---|
| UIO-66 | SF6 | 1.81 | 2.92×10-10 | 0.581 | -38906 |
| N2 | 12.03 | 4.74×10-10 | 0.57 | -14582 | |
| 13X | SF6 | 1.546 | 9.402×10-10 | 1.053 | -26173 |
| N2 | 1.014 | 2.26×10-8 | 0.4376 | -13360 | |
| AC | SF6 | 4.765 | 6.995×10-12 | 0.440 | -42193 |
| N2 | 9.74 | 6.91×10-10 | 0.518 | -16310 | |
| Mg-MOF-74 | SF6 | 6.565 | 3.206×10-11 | 1.849 | -34444 |
| N2 | 6.7072 | 9.36×10-10 | 1 | -18000 |
| 吸附剂材料 | 气体种类 | qm/mol·kg-1 | k0/Pa-1 | n | ΔH/J·mol-1 |
|---|---|---|---|---|---|
| UIO-66 | SF6 | 1.81 | 2.92×10-10 | 0.581 | -38906 |
| N2 | 12.03 | 4.74×10-10 | 0.57 | -14582 | |
| 13X | SF6 | 1.546 | 9.402×10-10 | 1.053 | -26173 |
| N2 | 1.014 | 2.26×10-8 | 0.4376 | -13360 | |
| AC | SF6 | 4.765 | 6.995×10-12 | 0.440 | -42193 |
| N2 | 9.74 | 6.91×10-10 | 0.518 | -16310 | |
| Mg-MOF-74 | SF6 | 6.565 | 3.206×10-11 | 1.849 | -34444 |
| N2 | 6.7072 | 9.36×10-10 | 1 | -18000 |
| 参数 | UIO-66 | 13X | AC | Mg-MOF-74 |
|---|---|---|---|---|
| SF6吸附时间常数/s-1 | 0.1 | 0.1 | 0.1 | 0.1 |
| N2吸附时间常数/s-1 | 0.15[ | 0.6[ | 0.2[ | 0.313[ |
| 参数 | UIO-66 | 13X | AC | Mg-MOF-74 |
|---|---|---|---|---|
| SF6吸附时间常数/s-1 | 0.1 | 0.1 | 0.1 | 0.1 |
| N2吸附时间常数/s-1 | 0.15[ | 0.6[ | 0.2[ | 0.313[ |
| [27] | DING Zhaoyang, HAN Zhiyang, SHI Wenrong, et al. Analysis of dynamic effective mass transfer coefficients of rapid pressure swing adsorption process for oxygen production[J]. CIESC Journal, 2018, 69(2): 759-768. |
| [28] | 彭荣. 多孔材料吸附储氢的CFD模拟与优化[D]. 武汉: 武汉理工大学, 2012. |
| PENG Rong. CFD modeling and optimization of adsorptive hydrogen storage in porous materials[D]. Wuhan: Wuhan University of Technology, 2012. | |
| [29] | Rached BEN-MANSOUR, QASEM Naef A A, ANTAR Mohammed A. Carbon dioxide adsorption separation from dry and humid CO2/N2 mixture[J]. Computers & Chemical Engineering, 2018, 117: 221-235. |
| [1] | 孙强, 杨典, 王芳, 等. 基于ASPEN PLUS的六氟化硫提纯工艺研究[J]. 云南化工, 2020, 47(9): 41-45. |
| SUN Qiang, YANG Dian, WANG Fang, et al. Research on distillation of pure sulfur hexafluoride based on ASPEN PLUS[J]. Yunnan Chemical Technology, 2020, 47(9): 41-45. | |
| [2] | REN Jiahao, CHANG Miao, ZENG Wenjiang, et al. Computer-aided discovery of MOFs with calixarene-analogous microenvironment for exceptional SF6 capture[J]. Chemistry of Materials, 2021, 33(13): 5108-5114. |
| [3] | FANG Xuekun, HU Xia, Greet JANSSENS-MAENHOUT, et al. Sulfur hexafluoride (SF6) emission estimates for China: An Inventory for 1990—2010 and a projection to 2020[J]. Environmental Science & Technology, 2013, 47(8): 3848-3855. |
| [4] | 中国气象局气候变化中心. 中国温室气体公报[R]. 北京: 中国气象局, 2023. |
| China Meteorological Administration Climate Center. China greenhouse gas bulletin[R]. Beijing: China Meteorological Administration, 2023. | |
| [5] | 刘红志, 彭柯. 六氟化硫回收回充净化处理系统的应用研究[J]. 四川电力技术, 2011, 34(1): 52-55. |
| LIU Hongzhi, PENG Ke. Research on the application of sulfur hexafluoride recovery and purification treatment system[J]. Sichuan Electric Power Technology. 2011, 34(1): 52-55. | |
| [6] | ZHENG Xianqiang, SHEN Yanlong, WANG Shitao, et al. Selective adsorption of SF6 in covalent- and metal-organic frameworks[J]. Chinese Journal of Chemical Engineering, 2021, 39: 88-95. |
| [7] | MOSLEH Soleiman, KHAKSAR Hadis. Cu-BDC MOF/CNFs hybrids for rapid CO2 capture in a circulating fluidized bed via temperature swing adsorption process[J]. Chemical Engineering Science, 2024, 287:119773. |
| [8] | 谢任禹, 雍觐源, 江龙, 等. 变湿吸附三维循环构建及能效分析[J]. 工程热物理学报, 2024, 45(9): 2593-2598. |
| XIE Renyu, YONG Jinyuan, JIANG Long, et al. Construction of three-dimensional moisture swing adsorption cycle and energy efficiency analysis[J]. Journal of Engineering Thermophysics, 2024, 45(9): 2593-2598. | |
| [9] | ZHAO Qinghu, WU Fan, HE Yingdian, et al. Impact of operating parameters on CO2 capture using carbon monolith by electrical swing adsorption technology (ESA)[J]. Chemical Engineering Journal, 2017, 327: 441-453. |
| [10] | 闫江文. 用于SF6/N2吸附分离的微孔MOFs的合成及其光响应研究[D]. 保定: 河北大学, 2024. |
| YAN Jiangwen. Synthesis microporous MOFs for SF6/N2 adsorption separation and photoresponse[D]. Baoding: Hebei University, 2024. | |
| [11] | CHEN Sirui, SHEN Yuanhui, GUAN Zhongbo, et al. Adsorption properties of SF6 on zeolite NaY, 13X, activated carbon, and silica gel[J]. Journal of Chemical & Engineering Data, 2020, 65(8): 4044-4051. |
| [12] | 高春霄, 赵睿恺, 邓帅, 等. 混合绝缘气体变温吸附分离回收SF6优化研究[J]. 低碳化学与化工, 2025, 50: 95-100. |
| GAO Chunxiao, ZHAO Ruikai, DENG Shuai,et al. Optimization study of SF6 recovery from mixed insulating gases using temperatureswing adsorption[J]. Low-Carbon Chemistry and Chemical Engineering, 2025, 50: 95-100. | |
| [13] | LIU Lei, JIN Seongmin, Kwangjun KO, et al. Alkyl-functionalization of (3-aminopropyl) triethoxysilane-grafted zeolite beta for carbon dioxide capture in temperature swing adsorption[J]. Chemical Engineering Journal, 2020, 382: 122834. |
| [14] | HAN Bo, CHAKRABORTY Anutosh. Advanced cooling heat pump and desalination employing functional UiO-66 (Zr) metal-organic frameworks [J]. Energy Conversion and Management, 2020, 213: 112825. |
| [15] | 任可欣, 鲁军辉, 王随林, 等. 低湿CO2/H2O混合气体吸附特性实验[J]. 化工进展, 2022, 41(12): 6698-6710. |
| REN Kexin, LU Junhui, WANG Suilin, et al. Adsorption characteristics of CO2/H2O with low humidity[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6698-6710. | |
| [16] | Ammar ALI ABD, OTHMAN Mohd Roslee, SHAMSUDIN Ili Khairunnisa, et al. Biogas upgrading to natural gas pipeline quality using pressure swing adsorption for CO2 separation over UiO-66: Experimental and dynamic modelling assessment[J]. Chemical Engineering Journal, 2023, 453: 139774. |
| [17] | CHEN Lijin, DENG Shuai, ZHAO Ruikai, et al. Temperature swing adsorption for CO2 capture: Thermal design and management on adsorption bed with single-tube/three-tube internal heat exchanger[J]. Applied Thermal Engineering, 2021, 199: 117538. |
| [18] | 周圆圆, 杨华伟, 张东辉. 甲烷/氮气变压吸附分离的实验与模拟[J]. 天然气化工, 2011, 36(5): 21-27. |
| ZHOU Yuanyuan, YANG Huawei, ZHANG Donghui. Simulation and experiment for the pressure swing adsorption separation of methane and nitrogen[J]. Natural Gas Chemical Industry, 2011, 36(5): 21-27. | |
| [19] | LIAN Yahui, DENG Shuai, LI Shuangjun, et al. Numerical analysis on CO2 capture process of temperature swing adsorption (TSA): Optimization of reactor geometry[J]. International Journal of Greenhouse Gas Control, 2019, 85: 187-198. |
| [20] | QASEM Naef A A, Rached BEN-MANSOUR. Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: A CFD simulation[J]. Applied Energy, 2018, 209: 190-202. |
| [21] | Jaehoon CHA, Seongbin GA, LEE Seung-Jun, et al. Integrated material and process evaluation of metal-organic frameworks database for energy-efficient SF6/N2 separation[J]. Chemical Engineering Journal, 2021, 426: 131787. |
| [22] | CHO Wan-Seon, LEE Kwang-Hoon, CHANG Hyang-Ja, et al. Evaluation of pressure-temperature swing adsorption for sulfur hexafluoride (SF6) recovery from SF6 and N2 gas mixture[J]. Korean Journal of Chemical Engineering, 2011, 28(11): 2196-2201. |
| [23] | KIM Min-Bum, LEE Seung-Joon, LEE Chang Yeon, et al. High SF6 selectivities and capacities in isostructural metal-organic frameworks with proper pore sizes and highly dense unsaturated metal sites[J]. Microporous and Mesoporous Materials, 2014, 190: 356-361. |
| [24] | YANG Xiaoxian, Arash ARAMI-NIYA, Jiafei LYU, et al. Net, excess, and absolute adsorption of N2, CH4, and CO2 on metal-organic frameworks of ZIF-8, MIL-101(Cr), and UiO-66 at 282—361K and up to 12MPa[J]. Journal of Chemical & Engineering Data, 2020, 66(1): 404-414. |
| [25] | ZHAO Ruikai, LIU Longcheng, ZHAO Li, et al. A comprehensive performance evaluation of temperature swing adsorption for post-combustion carbon dioxide capture[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109285. |
| [26] | Rached BEN-MANSOUR, QASEM Naef A A. An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74[J]. Energy Conversion and Management, 2018, 156: 10-24. |
| [27] | 丁兆阳, 韩治洋, 石文荣, 等. 快速变压吸附制氧动态传质系数模拟分析[J]. 化工学报, 2018, 69(2): 759-768. |
| [1] | YIN Xiaoyun, ZHU Jin, LIU Chunyan, ZHANG Jintao, XU Yuan, ZHU Yingru, SU Ming, SUN Yue, SUN Jie, YUAN Ying. Energy optimization of CPS sulfur recovery unit based on Plackett-Burman design and response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 124-133. |
| [2] | ZHOU Jinghao, ZHANG Chaoyang, HU Haoxing, WANG Siming, LIU Jingyuan, WEI Guanghua. Numerical analysis of gas transfer in microporous layer of PEMFC based on lattice Boltzmann method [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4898-4907. |
| [3] | WANG Jilong, HE Lei, SU Yi, TANG Zhaofan. Numerical simulation on natural gas flameless combustion(MILD) in tail gas incinerator furnaces [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4928-4936. |
| [4] | WANG Xiaoguang, DONG Qing, LANG Wenli, HONG Xiangxin, HUANG Zhenxiang, TAN Fengyu, LEI Yizhu, YU Ziyi. Progress on emission reduction and resource utilization of ultra-low concentration methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5363-5376. |
| [5] | DUAN Xianzhe, BI Wenting, LI Nan, DOU Jiale, SHAO Bingqing, WANG Jiawei, WU Peng, HUANG Huan, TANG Zhenping. Numerical simulation for disposal of high-level radioactive wastes (HLWs): Mechanisms and influencing factors of radionuclide migration [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5391-5405. |
| [6] | LU Ling, YU Lei, GU Xia, LAI Minming, ZHOU Kai, WANG Yapeng, LI Xiang. Efficient thermocatalytic and resource utilization of pharmaceutical waste salt [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5432-5441. |
| [7] | ZHANG Guanghui, JIANG Jinxu, HUANG Lei, CHEN Shixiang, MA Tiantian. Influencing factors analysis and prediction for oxygen-enriched combustion characteristics of municipal sludge [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5460-5470. |
| [8] | FU Hongmei, LIU Dinghua, LIU Xiaoqin. Research progress on the separation of aromatic isomers using MOF materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5006-5017. |
| [9] | ZHANG Wenjing, HUANG Zhixin, LI Shiteng, DENG Shuai, LI Shuangjun. Biomass carbon aerogels for CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5018-5032. |
| [10] | HONG Kai, FAN Huan, TIAN Jia, ZHANG Xingfei. Treatment of copper-arsenic polymetallic acidic wastewater by sulfide precipitation: A review [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5301-5314. |
| [11] | DU Xuan, WANG Zhanhong, ZHENG Bin, XU Wei, WANG Shuo, SHI Peng, GAO Guo. Progress on separation of cobalt-iron acid leaching solution and battery grade iron phosphate recovery technology [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5327-5338. |
| [12] | LI Ka, XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao. Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4381-4393. |
| [13] | DAI Guilong, WANG Xiaoyu, HUANGFU Jiangfei, GONG Lingzhu. Convection heat transfer characteristics of pore-scale Laguerre Voronoi open-cell foam [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4394-4407. |
| [14] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [15] | WANG Zhaolin, ZHANG Zhigang, ZHOU Jing, GAO Chen, PENG Kechen, JIANG Mindi, XI Xi, XU Shengli, LIU Hong. Flow and heat transfer characteristics based on Gyroid triply periodic minimal surface heat exchange components [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4454-4462. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |