Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 4928-4936.DOI: 10.16085/j.issn.1000-6613.2025-0003

• Chemical processes and equipment • Previous Articles    

Numerical simulation on natural gas flameless combustion(MILD) in tail gas incinerator furnaces

WANG Jilong(), HE Lei, SU Yi(), TANG Zhaofan   

  1. Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China
  • Received:2025-01-02 Revised:2025-04-23 Online:2025-09-30 Published:2025-09-25
  • Contact: SU Yi

基于尾气焚烧炉膛天然气无焰燃烧(MILD)数值模拟

王吉龙(), 何磊, 苏毅(), 唐昭帆   

  1. 中国船舶集团有限公司第七一一研究所,上海 201108
  • 通讯作者: 苏毅
  • 作者简介:王吉龙(1995—),男,硕士研究生,研究方向为能源高效清洁利用。E-mail:wangjl19950920@163.com

Abstract:

Taking the tail gas incinerator of a refinery plant as the research object, the effects of the distribution ratio of primary and secondary air, the jet velocity of secondary air and the degree of dispersion of secondary air on the formation of MILD combustion, combustion characteristics and NO x generation in the chamber of the incinerator are investigated by means of numerical simulation. Numerical simulation results show that reducing the proportion of primary air and increasing the jet velocity of secondary air contribute to the formation of MILD combustion under the condition of constant total air flow. When the primary air volume is gradually changed from fuel-poor combustion to fuel-rich combustion, the transition from conventional combustion to MILD combustion can be realized, and the NO x generated from combustion is significantly reduced in this process. Increasing the jet velocity of the secondary air is conducive to strengthening the entrainment of the flue gas and the uniform distribution of the fuel/air mixture, expanding the range of combustion reaction, making the temperature distribution in the furnace chamber more uniform, and effectively reducing the NO x emission at the outlet. The formation and stabilization of MILD combustion can be promoted at higher secondary air jet velocities. Appropriately increasing the degree of secondary air dispersion within the simulation range expands the secondary air jet entrainment range, allowing combustion to take place in a larger area, which is conducive to stabilizing combustion and further reducing NO x emissions.

Key words: MILD combustion, jet velocity, combustion characteristics, NO x emission, numerical simulation

摘要:

以某炼化厂的尾气焚烧炉为研究对象,通过数值模拟的方法,研究了一次风和二次风的分配比例、二次风的射流速度以及二次风的分散程度对焚烧炉膛内中、低氧稀释燃烧(MILD)的形成、燃烧特性及NO x 生成的影响。数值模拟结果表明:在空气总流量不变的情况下,减小一次风的占比并提高二次风射流速度有助于MILD燃烧的形成。当一次风量由贫燃料燃烧逐渐转变为富燃料燃烧时,可以实现常规燃烧向MILD燃烧的转变,在此过程中,燃烧产生的NO x 显著减少。提高二次风的射流速度,有利于强化烟气的卷吸和燃料/空气混合物的均匀分布,扩大燃烧反应范围,使炉膛内的温度分布更加均匀,有效减少出口的NO x 排放。在较高的二次风射流速度下,可以促进MILD燃烧的形成和稳定。在模拟范围内适当提高二次风分散程度,扩大了二次风射流卷吸范围,使得燃烧发生在更大区域,有利于稳定燃烧及进一步降低NO x 排放。

关键词: 中、低氧稀释燃烧, 射流速度, 燃烧特性, NO x 排放, 数值模拟

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd