Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2972-2983.DOI: 10.16085/j.issn.1000-6613.2024-1761
• Chemical processes emission reduction • Previous Articles
YU Anfeng(
), WU Qian, YANG Zhe(
), LUO Yun, WANG Yuchen, LIU Huan
Received:2024-10-31
Revised:2025-01-03
Online:2025-05-20
Published:2025-05-25
Contact:
YANG Zhe
通讯作者:
杨哲
作者简介:于安峰(1982—),男,博士,教授级高级工程师,研究方向为石化行业风险评估、氢安全、燃爆安全与防控。E-mail:yuaf.qday@sinopec.com。
基金资助:CLC Number:
YU Anfeng, WU Qian, YANG Zhe, LUO Yun, WANG Yuchen, LIU Huan. Research progress on safety of green hydrogen storage and transportation process and material failure mechanism[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2972-2983.
于安峰, 吴倩, 杨哲, 罗云, 王宇辰, 刘欢. 绿氢储输过程安全及材料失效机理研究进展[J]. 化工进展, 2025, 44(5): 2972-2983.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1761
| 标准名称 | 等级 |
|---|---|
| ASTM | A53,A106,A135,A139,A333,A381 |
| API 5L | A,B,X42,X52,X56,X60,X65,X70,X80 |
| 标准名称 | 等级 |
|---|---|
| ASTM | A53,A106,A135,A139,A333,A381 |
| API 5L | A,B,X42,X52,X56,X60,X65,X70,X80 |
| 1 | 杜忠明, 郑津洋, 戴剑锋, 等. 我国绿氢供应体系建设思考与建议[J]. 中国工程科学, 2022, 24(6): 64-71. |
| DU Zhongming, ZHENG Jinyang, DAI Jianfeng, et al. Construction of green-hydrogen supply system in China: Reflections and suggestions[J]. Strategic Study of CAE, 2022, 24(6): 64-71. | |
| 2 | 国家能源局. 氢能产业发展中长期规划(2021—2035年)[EB/OL]. (2022-03-23) [2022-08-15]. . |
| National Energy Administration. Medium and long term plan for the development of hydrogen energy industry (2021—2035) [EB/OL]. (2022-03-23) [2022-08-15]. . | |
| 3 | 蒲亮, 余海帅, 代明昊, 等. 氢的高压与液化储运研究及应用进展[J]. 科学通报, 2022, 67(19): 2172-2191. |
| PU Liang, YU Haishuai, DAI Minghao, et al. Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation[J]. Chinese Science Bulletin, 2022, 67(19): 2172-2191. | |
| 4 | 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20. |
| ZOU Caineng, LI Jianming, ZHANG Xi, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20. | |
| 5 | 王琴, 李文昊, 伍奕, 等. X80钢组织状态对CO抑制氢脆作用的影响[J]. 油气储运, 2022, 41(3): 302-310. |
| WANG Qin, LI Wenhao, WU Yi, et al. The effect of X80 steel microstructure on CO inhibition of hydrogen embrittlement[J]. Oil & Gas Storage and Transportation, 2022, 41(3): 302-310. | |
| 6 | ZHAO Weimin, WANG Wenchen, LI Shouying, et al. Insights into the role of CO in inhibiting hydrogen embrittlement of X80 steel weld at different hydrogen blending ratios[J]. International Journal of Hydrogen Energy, 2024, 50: 292-302. |
| 7 | STAYKOV Aleksandar, KOMODA Ryosuke, KUBOTA Masanobu, et al. Coadsorption of CO and H2 on an iron surface and its implication on the hydrogen embrittlement of iron[J]. The Journal of Physical Chemistry C, 2019, 123(50): 30265-30273. |
| 8 | 李守英. 临氢管线X80钢氢吸附扩散机理及控制研究[D]. 青岛: 中国石油大学(华东), 2020. |
| LI Shouying. Study on hydrogen adsorption/diffusion mechanism and control of X80 steel hydrogen pipeline[D]. Qingdao: China University of Petroleum (East China), 2020. | |
| 9 | 杨哲, 吴倩, 马梦白, 等. 绿氢产业链安全风险与防控技术研究进展[J]. 石油炼制与化工, 2024, 55(1): 82-88. |
| YANG Zhe, WU Qian, MA Mengbai, et al. Research progress of safety risk analysis and prevention and control technology in green hydrogen industry chain[J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 82-88. | |
| 10 | ROBERTSON I M, BIRNBAUM H K, SOFRONIS P. Chapter 91 hydrogen effects on plasticity[M]//Dislocations in solids. Amsterdam: Elsevier, 2009: 249-293. |
| 11 | LOUTHAN M R. Strain localization and hydrogen embrittlement[J]. Scripta Metallurgica, 1983, 17(4): 451-454. |
| 12 | PFEIL L B. The effect of occluded hydrogen on the tensile strength of iron[J]. Proceedings of the Royal Society of London.Series A, Containing Papers of a Mathematical and Physical Character, 1926, 11(760): 182-195. |
| 13 | TROIANO Alexander R. The role of hydrogen and other interstitials in the mechanical behavior of metals[J]. Metallography, Microstructure, and Analysis, 2016, 5(6): 557-569. |
| 14 | ORIANI R A. A mechanistic theory of hydrogen embrittlement of steels[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1972, 76(8): 848-857. |
| 15 | LYNCH S P. Hydrogen embrittlement (HE) phenomena and mechanisms[M]//Stress corrosion cracking. Amsterdam: Elsevier, 2011: 90-130. |
| 16 | NAGUMO Michihiko, TAKAI Kenichi. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview[J]. Acta Materialia, 2019, 165: 722-733. |
| 17 | DJUKIC Milos B, BAKIC Gordana M, SIJACKI ZERAVCIC Vera, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion[J]. Engineering Fracture Mechanics, 2019, 216: 106528. |
| 18 | 彭志贤. 管线钢中夹杂物与氢作用机理及其对HIC敏感性的影响[D]. 武汉: 武汉科技大学, 2021. |
| PENG Zhixian. Interaction between inclusions and hydrogen in pipeline steel and its effect on HIC sensitivity[D]. Wuhan: Wuhan University of Science and Technology, 2021. | |
| 19 | 郑秀芳, 刘继雄, 刘吉斌, 等. 焊接接头氢陷阱性质及捕获氢能力[J]. 钢铁研究, 1998, 26(5): 40-42. |
| ZHENG Xiufang, LIU Jixiong, LIU Jibin, et al. Nature of hydrogen trap at weld joints and hydrogen catching[J]. Research on Iron and Steel, 1998, 26(5): 40-42. | |
| 20 | 周池楼, 刘先晖, 张永君, 等. 钢中夹杂物对氢扩散行为的影响规律[J]. 天然气工业, 2022, 42(9): 135-144. |
| ZHOU Chilou, LIU Xianhui, ZHANG Yongjun, et al. Influence of inclusions in steel on hydrogen diffusion behavior[J]. Natural Gas Industry, 2022, 42(9): 135-144. | |
| 21 | XIAO Hu, HUANG Feng, PENG Zhixian, et al. Sequential kinetic analysis of the influences of non-metallic inclusions on hydrogen diffusion and trapping in high-strength pipeline steel with Al-Ti deoxidisation and Mg treatment[J]. Corrosion Science, 2022, 195: 110006. |
| 22 | HUANG F, LI X G, LIU J, et al. Effects of alloying elements, microstructure, and inclusions on hydrogen induced cracking of X120 pipeline steel in wet H2S sour environment[J]. Materials and Corrosion, 2012, 63(1): 59-66. |
| 23 | 周池楼, 何默涵, 郭晋, 等. 高压氢环境奥氏体不锈钢焊件氢脆研究进展[J]. 化工进展, 2022, 41(2): 519-536. |
| ZHOU Chilou, HE Mohan, GUO Jin, et al. Review on hydrogen embrittlement of austenitic stainless steel weldments in high pressure hydrogen atmosphere[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 519-536. | |
| 24 | SUN Binhan, ZHAO Huan, DONG Xizhen, et al. Current challenges in the utilization of hydrogen energy—A focused review on the issue of hydrogen-induced damage and embrittlement[J]. Advances in Applied Energy, 2024, 14: 100168. |
| 25 | 曹田田. 加氢站隔膜式氢气压缩机膜片破裂原因分析及发展建议[J]. 石油石化绿色低碳, 2024, 9(4): 14-20. |
| CAO Tiantian. Cause analysis and development suggestion of the diaphragm rupture of hydrogen compressor in hydrogen refueling stations[J]. Green Petroleum & Petrochemicals, 2024, 9(4): 14-20. | |
| 26 | 龙瑶妹, 钟涌, 康祥, 等. 超高压隔膜压缩机工作过程瞬态仿真及膜片应力分析[J]. 西安交通大学学报, 2024, 58(11): 137-146. |
| LONG Yaomei, ZHONG Yong, KANG Xiang, et al. Transient simulation and diaphragm stress analysis of ultra-high-pressure diaphragm compressors[J]. Journal of Xi’an Jiaotong University, 2024, 58(11): 137-146. | |
| 27 | JIA Xiaohan, CHEN Jiahao, WU Han, et al. Study on the diaphragm fracture in a diaphragm compressor for a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2016, 41(15): 6412-6421. |
| 28 | 郝莉, 巴鹏. MD2.5隔膜压缩机膜片的有限元分析[J]. 压缩机技术, 2022(2): 21-25. |
| HAO Li, BA Peng. Finite element analysis of MD2.5 diaphragm compressor diaphragm[J]. Compressor Technology, 2022(2): 21-25. | |
| 29 | LEE Sung-Jun, SOHN Yoonchul, SEGU Dawit Zenebe, et al. An evaluation of the tribological characteristics of diaphragm plates for high-pressure hydrogen gas compressor applications[J]. Lubricants, 2023, 11(9): 411. |
| 30 | 中国工业气体工业协会. 加氢站用隔膜压缩机安全使用技术规范: T/CC [S]. |
| China Industrial Gases Industry Association. Technical regulations for safety use of diaphragm compressor for hydrogen refueling station: T/CC [S]. | |
| 31 | 毛超鹏. 高压氢气隔膜压缩机膜片力学分析与氢脆敏感性试验研究[D]. 北京: 北京化工大学, 2024. |
| MAO Chaopeng. Study on mechanical analysis and hydrogen embrittlement sensitivity test of diaphragm of high-pressure hydrogen diaphragm compressor[D]. Beijing: Beijing University of Chemical Technology, 2024. | |
| 32 | WANG Ting, JIA Xiaohan, LI Xueying, et al. Thermal-structural coupled analysis and improvement of the diaphragm compressor cylinder head for a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2020, 45(1): 809-821. |
| 33 | CHOI Myounggeun, HOU Jixin, Kristián MÁTHIS, et al. Tensile behavior of hydrogen-charged 316L stainless steel at elevated temperatures[J]. Materials Science and Engineering: A, 2014, 595: 165-172. |
| 34 | 张忠政, 巩建鸣. 高温高压条件下不锈钢的氢损伤[J]. 化工机械, 2009, 36(6): 644-648. |
| ZHANG Zhongzheng, GONG Jianming. Hydrogen-induced damage of stainless steel under the conditions of high temperature and high pressure[J]. Chemical Engineering & Machinery, 2009, 36(6): 644-648. | |
| 35 | FENG Lanxi, TANG Wenxuan, CHEN Zhuochen, et al. Atomistic insights into hydrogen-enhanced strain-induced vacancy in α-iron across varied strain rates[J]. Scripta Materialia, 2024, 252: 116246. |
| 36 | LI W X, ZHAO S W, HE P F, et al. Experimental and numerical study on high-cycle fatigue performance of austenitic stainless steel with pre-charged hydrogen[J]. International Journal of Fatigue, 2024, 185: 108359. |
| 37 | 贾海平, 王雅仪, 葛丽莎, 等. 储氢装备关键技术研究进展[J]. 西安工业大学学报, 2024, 44(4): 441-462. |
| JIA Haiping, WANG Yayi, GE Lisha, et al. Review on key technologies of hydrogen storage equipment[J]. Journal of Xi’an Technological University, 2024, 44(4): 441-462. | |
| 38 | 郑津洋, 胡军, 韩武林, 等. 中国氢能承压设备风险分析和对策的几点思考[J]. 压力容器, 2020, 37(6): 39-47. |
| ZHENG Jinyang, HU Jun, HAN Wulin, et al. Risk analysis and some countermeasures of pressure equipment for hydrogen energy in China[J]. Pressure Vessel Technology, 2020, 37(6): 39-47. | |
| 39 | 郑津洋, 马凯, 周伟明, 等. 加氢站用高压储氢容器[J]. 压力容器, 2018, 35(9): 35-42, 54. |
| ZHENG Jinyang, MA Kai, ZHOU Weiming, et al. High-pressure gaseous hydrogen storage vessel for hydrogen refueling station[J]. Pressure Vessel Technology, 2018, 35(9): 35-42, 54. | |
| 40 | ZHOU Chilou, LI Zhiyuan, ZHAO Yongzhi, et al. Effect of inside diameter on design fatigue life of stationary hydrogen storage vessel based on fracture mechanics[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13634-13642. |
| 41 | HUA Zhengli, ZHANG Xin, ZHENG Jinyang, et al. Hydrogen-enhanced fatigue life analysis of Cr-Mo steel high-pressure vessels[J]. International Journal of Hydrogen Energy, 2017, 42(16): 12005-12014. |
| 42 | DE MIGUEL Nerea, ACOSTA Beatriz, MORETTO P, et al. Hydrogen enhanced fatigue in full scale metallic vessel tests-Results from the MATHRYCE project[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13777-13788. |
| 43 | MATSUNAGA Hisao, YOSHIKAWA Michio, KONDO Ryota, et al. Slow strain rate tensile and fatigue properties of Cr-Mo and carbon steels in a 115 MPa hydrogen gas atmosphere[J]. International Journal of Hydrogen Energy, 2015, 40(16): 5739-5748. |
| 44 | HAGIHARA Akiyoshi, Yasuji ODA, NOGUCHI Hiroshi. Influence of testing frequency on fatigue crack growth of 6061-T6 aluminum alloy in hydrogen gas environment[J]. Key Engineering Materials, 2007, 353/354/355/356/357/358: 174-177. |
| 45 | TAMURA Motonori, SHIBATA Koji. Evaluation of mechanical properties of metals at 45 MPa hydrogen[J]. Journal of the Japan Institute of Metals, 2005, 69(12): 1039-1048. |
| 46 | BARTHÉLÉMY H. Effects of pressure and purity on the hydrogen embrittlement of steels[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2750-2758. |
| 47 | WADA Yoru, TAKASAWA Kouichi, ISHIGAKI Ryoji, et al. Measurement of fatigue crack growth rates for steels in hydrogen storage[C]//Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. Volume 6: Materials and Fabrication, Parts A and B. Prague, Czech Republic. July 26-30, 2009: 215-224. |
| 48 | CLARK W G. Effect of temperature and pressure on hydrogen cracking in high strength type 4340 steel[J]. Journal of Materials for Energy Systems, 1979, 1(1): 33-40. |
| 49 | WILLIAMS Dell P, NELSON Howard G. Embrittlement of 4130 steel by low-pressure gaseous hydrogen[J]. Metallurgical Transactions, 1970, 1(1): 63-68. |
| 50 | 郑津洋, 王振宇, 陆群杰, 等. 奥氏体不锈钢深冷容器疲劳设计曲线探讨[J]. 压力容器, 2021, 38(5): 26-34. |
| ZHENG Jinyang, WANG Zhenyu, LU Qunjie, et al. Discussion on design fatigue curves of austenitic stainless steels for cryogenic pressure vessels[J]. Pressure Vessel Technology, 2021, 38(5): 26-34. | |
| 51 | LIVNE T, CHEN X, GERBERICH W W. Temperature effects on hydrogen assisted crack growth in internally charged AISI 4340 steel[J]. Scripta Metallurgica, 1986, 20(5): 659-662. |
| 52 | GANGLOFF R P, WEI R P. Gaseous hydrogen embrittlement of high strength steels[J]. Metallurgical Transactions A, 1977, 8(7): 1043-1053. |
| 53 | FRITZEMEIER Leslie C, CHANDLER Willis T. Hydrogen embrittlement—Rocket engine applications[M]//Superalloys supercomposites superceramics. Amsterdam: Elsevier, 1989: 491-524. |
| 54 | MELAINA M W, ANTONIA O, PENEV M. Blending hydrogen into natural gas pipeline networks: A review of key issues[R]. Office of Scientific and Technical Information (OSTI), 2013. |
| 55 | The American Society of Mechanical Engineers. Hydrogen piping and pipelines: [S]. |
| 56 | 程玉峰. 高压氢气管道氢脆问题明晰[J]. 油气储运, 2023, 42(1): 1-8. |
| CHENG Yufeng. Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments[J]. Oil & Gas Storage and Transportation, 2023, 42(1): 1-8. | |
| 57 | ZHANG Binglu, ZHU Qisi, XU Chi, et al. Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels[J]. Nature Communications, 2022, 13(1): 3858. |
| 58 | 宋雨霖, 李玉星. 氢气在管线钢表面的解离吸附机制及影响因素研究进展[J]. 油气储运, 2024, 43(11): 1212-1223. |
| SONG Yulin, LI Yuxing. Research review of the mechanism and influencing factors in dissociative adsorption of hydrogen on pipeline steel surface[J]. Oil & Gas Storage and Transportation, 2024, 43(11): 1212-1223. | |
| 59 | KIRCHHEIM Reiner. Changing the interfacial composition of carbide precipitates in metals and its effect on hydrogen trapping[J]. Scripta Materialia, 2019, 160: 62-65. |
| 60 | WAN Liang, GENG Wentong, ISHII Akio, et al. Hydrogen embrittlement controlled by reaction of dislocation with grain boundary in alpha-iron[J]. International Journal of Plasticity, 2019, 112: 206-219. |
| 61 | XIE Degang, LI Suzhi, LI Meng, et al. Hydrogenated vacancies lock dislocations in aluminium[J]. Nature Communications, 2016, 7: 13341. |
| 62 | LEE Dongsun, Yasuji ODA, NOGUCHI Hiroshi. Observation of small fatigue crack growth behavior in the extremely low growth rate region of low carbon steel in a hydrogen gas environment[J]. International Journal of Fracture, 2013, 183(2): 223-240. |
| 63 | WANG L W, LIU Z Y, CUI Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel[J]. Corrosion Science, 2014, 85: 401-410. |
| 64 | ZHU Zhixiong, HAN Jian, LI Huijun, et al. High temperature processed high Nb X80 steel with excellent heat-affected zone toughness[J]. Materials Letters, 2016, 163: 171-174. |
| 65 | KHALAJ Gholamreza, KHALAJ Mohammad-Javad. Investigating the corrosion of the Heat-Affected Zones (HAZs) of API-X70 pipeline steels in aerated carbonate solution by electrochemical methods[J]. International Journal of Pressure Vessels and Piping, 2016, 145: 1-12. |
| 66 | YANG Fuyuan, WANG Tianze, DENG Xintao, et al. Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process[J]. International Journal of Hydrogen Energy, 2021, 46(61): 31467-31488. |
| 67 | MORADI Ramin, GROTH Katrina M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12254-12269. |
| 68 | ZHAO Xiaowen, YE Lin. Structure and properties of highly oriented polyoxymethylene produced by hot stretching[J]. Materials Science and Engineering: A, 2011, 528(13/14): 4585-4591. |
| 69 | KEVIN HARRISONS OS. 700-bar hydrogen dispenser hose reliability improvement[R]. America: America National Renewable Energy Laboratory, 2018. |
| 70 | SPRIK S, KURTZ J, AINSCOUGH C, et al. Next generation hydrogen station composite data products—Data through quarter 4 of 2016[R]. America: America National Renewable Energy Laboratory, 2017. |
| 71 | H2Tools. Lessons learned database[EB/OL].(2012-06-14)[2023-06-11]. . |
| 72 | NAYLOR Tim deV. Permeation properties[M]//Comprehensive polymer science and supplements. Amsterdam: Elsevier, 1989: 643-668. |
| 73 | ADAMS P, BENGAOUER A, CARITEAU B, et al. Allowable hydrogen permeation rate from road vehicles[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2742-2749. |
| 74 | DUNCAN B, URQUHART J, ROBERTS S. Review of measurement and modelling of permeation and diffusion in polymers[R]. United Kingdom: National Physical Laboratory, 2005. |
| 75 | Jens HUMPENÖDER. Gas permeation of fibre reinforced plastics[J]. Cryogenics, 1998, 38(1): 143-147. |
| 76 | SIMMONS Kevin. Compatibility of low cost, high pressure, polymer H2 dispensing hoses[R]. America: Pacific Northwest National Laboratory, 2019. |
| [1] | SU Junjie, LIU Su, ZHOU Haibo, LIU Chang, ZHANG Lin, WANG Yangdong, XIE Zaiku. InZr/SAPO-34 bifunctional catalyst for direct production of light olefins from CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2870-2878. |
| [2] | SUN Binhan, ZHANG Xiancheng, TU Shantung. Towards the intrinsic safety of hydrogen energy utilization: Progress and challenges in the study of hydrogen-induced damage [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2898-2906. |
| [3] | JIN Shaoqing, FAN Xueyan, TANG Zhimou, WANG Yanli, WANG Darui, SUN Hongmin, YANG Weimin. Recent progress on titanosilicate zeolite catalyzed green oxidation technologies [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2907-2918. |
| [4] | MA Zixuan, SHI Ruichen, LIU Mingjie, YANG Yingjie, SONG Ziyu, MEI Xiaopeng, GAO Xiaofeng, HONG Longcheng, YAO Siyu, ZHANG Zhiguo, REN Qilong. Design and performance optimization of reactors for catalytic hydrogen production from cycloalkanes: Frontline progress and challenges [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2919-2937. |
| [5] | MENG Fanzhi, SUN Bing, YANG Zhe. Impact and risk assessment of feedstock substitution on new process safety in chemical production [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2955-2971. |
| [6] | XIE Jingwen, MENG Yifang, YE Wenjie, WANG Hualei, WEI Dongzhi. Semi-rational design to enhance short-chain alcohol dehydrogenases in the synthesis of (S)-1-(4-fluorophenyl)ethanol [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2515-2523. |
| [7] | NIE Hong, XI Yuanbing, GE Panzhu, DING Shi, ZHANG Dengqian. Sustainable aviation fuel production technology and prospects [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2529-2534. |
| [8] | WANG Shuizhong, SONG Guoyong. Selective hydrogenolysis of lignin into functional monophenols and their high-value utilization [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2535-2540. |
| [9] | LIU Wei, HOU Xuelan, YANG Guidong. Green hydrogen-ammonia cycle: Current status and perspective [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2625-2641. |
| [10] | SUN Zhongshun, LIU Gen, CHENG Chunyu, LI Meixin, YANG Xiantan, WU Zhiqiang, YANG Bolun. Research progress on thermochemical conversion of biomass to green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2667-2682. |
| [11] | HE Zhiyong. Catalyst evolved by stepwise dehydroxylation/decarbonization method achieves efficient methanol decomposition to produce hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2724-2732. |
| [12] | GAO Jiangang, JIANG Yapeng, BAO Baoqing, WANG Shuqi, CUI Shuming. Green methanol and green ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1987-1997. |
| [13] | CHENG Chonglyu, SHAN Conghui, ZHANG Mengfan, WEN X Jennifer, XU Baopeng. Research progress of hydrogen safety modeling [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1285-1297. |
| [14] | ZHANG Xin’er, PEI Liujun, ZHOU Yudie, JIN Kaili, WANG Jiping. Progress of TiO2-based photocatalysts for hydrogen production by water splitting with solar energy [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1298-1308. |
| [15] | ZHU Guoyu, GE Qi, FU Mingli. Durability testing and life prediction of methanol reforming catalysts for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1338-1346. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |