| 1 |
范跃新, 徐玲琳, 刘秀铭, 等. 从陆地和海洋生态系统角度辨析大气CO2浓度与全球变暖关系[J]. 亚热带资源与环境学报, 2012, 7(1): 55-60.
|
|
FAN Yuexin, XU Linglin, LIU Xiuming, et al. Relationship between atmospheric CO2 concentration and global warming based on carbon storage dynamics of terrestrial and marine ecosystems[J]. Journal of Subtropical Resources and Environment, 2012, 7(1): 55-60.
|
| 2 |
梁锋. 碳中和目标下碳捕集、利用与封存(CCUS)技术的发展[J]. 能源化工, 2021, 42(5): 19-26.
|
|
LIANG Feng. Development of carbon capture, utilization and storage(CCUS) under the carbon neutrality targets[J]. Energy Chemical Industry, 2021, 42(5): 19-26.
|
| 3 |
方向晨, 张志智, 张喜文. CO2的化工利用技术展望[J]. 当代化工, 2011, 40(3): 221-231.
|
|
FANG Xiangchen, ZHANG Zhizhi, ZHANG Xiwen. Technology prospects of chemical utilization of CO2 [J]. Contemporary Chemical Industry, 2011, 40(3): 221-231.
|
| 4 |
张娟利, 杨天华. 二氧化碳的资源化化工利用[J]. 煤化工, 2016, 44(3): 1-5, 15.
|
|
ZHANG Juanli, YANG Tianhua. Chemical utilization of carbon dioxide as a resource[J]. Coal Chemical Industry, 2016, 44(3): 1-5, 15.
|
| 5 |
李庆勋, 王宗宝, 娄舒洁, 等. 二氧化碳加氢制甲醇研究进展[J]. 现代化工, 2019, 39(5): 19-23.
|
|
LI Qingxun, WANG Zongbao, LOU Shujie, et al. Research progress in methanol production from carbon dioxide hydrogenation[J]. Modern Chemical Industry, 2019, 39(5): 19-23.
|
| 6 |
刘畅, 刘忠文. CO2加氢一步制二甲醚展望[J]. 化工进展, 2022, 41(3): 1115-1120.
|
|
LIU Chang, LIU Zhongwen. Perspective on the one-step CO2 hydrogenation to dimethyl ether[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1115-1120.
|
| 7 |
WANG Han, FAN Sheng, WANG Sen, et al. Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1609-1619.
|
| 8 |
ZHONG Jiawei, YANG Xiaofeng, WU Zhilian, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413.
|
| 9 |
WANG Wei, WANG Shengping, MA Xinbin, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727.
|
| 10 |
Sara NAVARRO-JAÉN, VIRGINIE Mirella, BONIN Julien, et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol[J]. Nature Reviews Chemistry, 2021, 5(8): 564-579.
|
| 11 |
YUE Wenzhe, LI Yanhong, WEI Wan, et al. Highly selective CO2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor[J]. Angewandte Chemie International Edition, 2021, 60(33): 18289-18294.
|
| 12 |
WANG Jijie, LI Guanna, LI Zelong, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10): e1701290.
|
| 13 |
HU Jingting, YU Liang, DENG Jiao, et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J]. Nature Catalysis, 2021, 4: 242-250.
|
| 14 |
MARTIN Oliver, MARTÍN Antonio J, MONDELLI Cecilia, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(21): 6261-6265.
|
| 15 |
CENTI Prof Gabriele, IAQUANIELLO Gaetano, PERATHONER Prof Siglinda. Can we afford to waste carbon dioxide? carbon dioxide as a valuable source of carbon for the production of light olefins[J]. ChemSusChem, 2011, 4(9): 1265-1273.
|
| 16 |
DORNER Robert W, HARDY Dennis R, WILLIAMS Frederick W, et al. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons[J]. Energy & Environmental Science, 2010, 3(7): 884-890.
|
| 17 |
WEI Jian, SUN Jian, WEN Zhiyong, et al. New insights into the effect of sodium on Fe3O4- based nanocatalysts for CO2 hydrogenation to light olefins[J]. Catalysis Science & Technology, 2016, 6(13): 4786-4793.
|
| 18 |
GENG Shunshun, JIANG Feng, XU Yuebing, et al. Iron-based Fischer-Tropsch synthesis for the efficient conversion of carbon dioxide into isoparaffins[J]. ChemCatChem, 2016, 8(7): 1303-1307.
|
| 19 |
JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068.
|
| 20 |
SU Junjie, ZHOU Haibo, LIU Su, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO x /AlPO-18 bifunctional catalysts[J]. Nature Communications, 2019, 10(1): 1297.
|
| 21 |
CHENG Kang, GU Bang, LIU Xiaoliang, et al. Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15): 4725-4728.
|
| 22 |
GAO Peng, DANG Shanshan, LI Shenggang, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catalysis, 2018, 8(1): 571-578.
|
| 23 |
LI Zelong, WANG Jijie, QU Yuanzhi, et al. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12): 8544-8548.
|
| 24 |
LIU Xiaoliang, WANG Mengheng, YIN Haoren, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis, 2020, 10(15): 8303-8314.
|
| 25 |
GAO Jiajian, JIA Chunmiao, LIU Bin. Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts[J]. Catalysis Science & Technology, 2017, 7(23): 5602-5607.
|