Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 1998-2007.DOI: 10.16085/j.issn.1000-6613.2024-0500
• Energy processes and technology • Previous Articles Next Articles
WANG Jiaqi(
), LIU Jiaxing, WEI Haoqi, ZHOU Xinlin, CHENG Chuanxiao, GE Kun(
)
Received:2024-03-27
Revised:2024-07-27
Online:2025-05-07
Published:2025-04-25
Contact:
GE Kun
王佳琪(
), 刘佳兴, 魏皓琦, 周昕霖, 程传晓, 葛坤(
)
通讯作者:
葛坤
作者简介:王佳琪(1988—),女,副教授,博士生导师,研究方向为多孔介质渗流及传热传质机理。E-mail:jiaqiwang@hrbeu.edu.cn。
基金资助:CLC Number:
WANG Jiaqi, LIU Jiaxing, WEI Haoqi, ZHOU Xinlin, CHENG Chuanxiao, GE Kun. Rhamnolipid-enhanced CO2 hydrate production[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1998-2007.
王佳琪, 刘佳兴, 魏皓琦, 周昕霖, 程传晓, 葛坤. 鼠李糖脂强化CO2水合物生成[J]. 化工进展, 2025, 44(4): 1998-2007.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0500
| 不同质量分数溶液 | 去离子水体积/mL | 溶质质量/g |
|---|---|---|
| 0.2%十二烷基硫酸钠溶液 | 50 | 0.1 |
| 0.05%鼠李糖脂溶液 | 50 | 0.025 |
| 0.1%鼠李糖脂溶液 | 50 | 0.05 |
| 0.2%鼠李糖脂溶液 | 50 | 0.1 |
| 0.4%鼠李糖脂溶液 | 50 | 0.2 |
| 0.6%鼠李糖脂溶液 | 50 | 0.3 |
| 0.8%鼠李糖脂溶液 | 50 | 0.4 |
| 不同质量分数溶液 | 去离子水体积/mL | 溶质质量/g |
|---|---|---|
| 0.2%十二烷基硫酸钠溶液 | 50 | 0.1 |
| 0.05%鼠李糖脂溶液 | 50 | 0.025 |
| 0.1%鼠李糖脂溶液 | 50 | 0.05 |
| 0.2%鼠李糖脂溶液 | 50 | 0.1 |
| 0.4%鼠李糖脂溶液 | 50 | 0.2 |
| 0.6%鼠李糖脂溶液 | 50 | 0.3 |
| 0.8%鼠李糖脂溶液 | 50 | 0.4 |
| 1 | 周诗岽, 陈小康, 边慧, 等. CO2水合物在管道中的生成及堵塞特性[J]. 化工进展, 2018, 37 (11): 4250-4256. |
| ZHOU Shidong, CHEN Xiaokang, BIAN Hui, et al. CO2 hydrate formation in pipeline and its plugging characteristics[J]. Chemical Industry and Engineering Progress, 2018, 37 (11): 4250-4256. | |
| 2 | TAKEYA S, KIDA M, MINAMI H, et al. Structure and thermal expansion of natural gas clathrate hydrates[J]. Chemical Engineering Science, 2006, 61(8): 2670-2674. |
| 3 | THAKRE Niraj, JANA Amiya K. Physical and molecular insights to clathrate hydrate thermodynamics[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110150. |
| 4 | SAJI A, YOSHIDA H, SAKAI M, et al. Fixation of carbon dioxide by clathrate-hydrate[J]. Energy Conversion and Management, 1992, 33(5/6/7/8): 643-649. |
| 5 | TAJIMA Hideo, YAMASAKI Akihiro, KIYONO Fumio. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation[J]. Energy, 2004, 29(11): 1713-1729. |
| 6 | BREWER Peter G, PELTZER Edward T, FRIEDERICH Gernot, et al. Experiments on the ocean sequestration of fossil fuel CO2: pH measurements and hydrate formation[J]. Marine Chemistry, 2000, 72(2/3/4): 83-93. |
| 7 | GABITTO Jorge, TSOURIS Costas. Dissolution mechanisms of CO2 hydrate droplets in deep seawaters[J]. Energy Conversion and Management, 2006, 47(5): 494-508. |
| 8 | YAMASAKI A, WAKATSUKI M, TENG H, et al. A new ocean disposal scenario for anthropogenic CO2: CO2 hydrate formation in a submerged crystallizer and its disposal[J]. Energy, 2000, 25(1): 85-96. |
| 9 | NISHIKAWA Nobuyuki, MORISHITA Masao, UCHIYAMA Motoshi, et al. CO2 clathrate formation and its properties in the simulated deep ocean[J]. Energy Conversion and Management, 1992, 33(5/6/7/8): 651-657. |
| 10 | WANG Xiaolin, ZHANG Fengyuan, Wojciech LIPIŃSKI. Research progress and challenges in hydrate-based carbon dioxide capture applications[J]. Applied Energy, 2020, 269: 114928. |
| 11 | SINEHBAGHIZADEH Saeid, SAPTORO Agus, MOHAMMADI Amir H. CO2 hydrate properties and applications: A state of the art[J]. Progress in Energy and Combustion Science, 2022, 93: 101026. |
| 12 | 刘妮, 张国昌, R E 罗杰斯. 二氧化碳气体水合物生成特性的实验研究[J]. 上海理工大学学报, 2007, 29(4): 405-408. |
| LIU Ni, ZHANG Guochang, Rogers R E. Experimental study of CO2 gas hydrates formation[J]. Journal of University of Shanghai for Science and Technology, 2007, 29(4): 405-408. | |
| 13 | SHI Changrui, CHAI Fengyuan, YANG Mingjun, et al. Enhance methane hydrate formation using fungus confining sodium dodecyl sulfate solutions for methane storage[J]. Journal of Molecular Liquids, 2021, 333: 116020. |
| 14 | LEE So Young, KIM Hyoung Chan, LEE JU Dong. Morphology study of methane-propane clathrate hydrates on the bubble surface in the presence of SDS or PVCap[J]. Journal of Crystal Growth, 2014, 402: 249-259. |
| 15 | 王帅, 杜胜男, 刘胜利, 等. 促进天然气水合物形成的影响因素分析[J]. 当代化工, 2016, 45(2): 367-369, 372. |
| WANG Shuai, DU Shengnan, LIU Shengli, et al. Analysis of factors of promoting natural gas hydrate formation[J]. Contemporary Chemical Industry, 2016, 45(2): 367-369, 372. | |
| 16 | HE Yan, SUN Mengting, CHEN Chen, et al. Surfactant-based promotion to gas hydrate formation for energy storage[J]. Journal of Materials Chemistry A, 2019, 7(38): 21634-21661. |
| 17 | 李玉星, 朱超, 王武昌. 表面活性剂促进CO2水合物生成的实验及动力学模型[J]. 石油化工, 2012, 41(6): 699-703. |
| LI Yuxing, ZHU Chao, WANG Wuchang. Promoting effects of surfactants on carbon dioxide hydrate formation and the kinetics[J]. Petrochemical Technology, 2012, 41(6): 699-703. | |
| 18 | 王树立, 代文杰, 刘墨夫, 等. 鼠李糖脂促进CO2水合物生成实验[J]. 常州大学学报(自然科学版), 2017, 29(4): 66-72. |
| WANG Shuli, DAI Wenjie, LIU Mofu, et al. Experimental research on CO2 hydrate formation promoted by rhamnolipid[J]. Journal of Changzhou University (Natural Science Edition), 2017, 29(4): 66-72. | |
| 19 | 吴虹, 汪薇, 韩双艳. 鼠李糖脂生物表面活性剂的研究进展[J]. 微生物学通报, 2007, 34(1): 148-152. |
| WU Hong, WANG Wei, HAN Shuangyan. Recent progress on rhamnolipid biosurfactant[J]. Microbiology China, 2007, 34(1): 148-152. | |
| 20 | 王冬梅, 陈丽华, 周立辉, 等. 鼠李糖脂对微生物菌剂降解石油的影响[J]. 环境工程学报, 2013, 7(10): 4121-4126. |
| WANG Dongmei, CHEN Lihua, ZHOU Lihui, et al. Effects of rhamnolipid on petroleum degradation of compound microbial inoculant[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 4121-4126. | |
| 21 | 丁莹. 鼠李糖脂表面活性剂的制备及其对微生物降解苯酚的影响[D]. 长沙: 湖南大学, 2010. |
| DING Ying. Preparation of rhamnolipid surfactant and its effect on microbial degradation of phenol[D]. Changsha: Hunan University, 2010. | |
| 22 | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 2版. 北京: 化学工业出版社, 2020. |
| CHEN Guangjin, SUN Changyu, MA Qinglan. Gas hydrate science and technology[M]. 2nd ed. Beijing: Chemical Industry Press, 2020. | |
| 23 | ZHONG Dongliang, WANG Jiale, LU Yiyu, et al. Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation[J]. Energy, 2016, 102: 621-629. |
| 24 | PENG Dingyu, ROBINSON Donald B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
| 25 | STRYJEK R, VERA J H. PRSV2: A cubic equation of state for accurate vapor-liquid equilibria calculations[J]. The Canadian Journal of Chemical Engineering, 1986, 64(5): 820-826. |
| 26 | STRYJEK R, VERA J H. PRSV: An improved Peng-Robinson equation of state for pure compounds and mixtures[J]. The Canadian Journal of Chemical Engineering, 1986, 64(2): 323-333. |
| 27 | MOHAMMADI Abolfazl, MANTEGHIAN Mehrdad, HAGHTALAB Ali, et al. Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS[J]. Chemical Engineering Journal, 2014, 237: 387-395. |
| 28 | KLAUDA Jeffery B, SANDLER Stanley I. A fugacity model for gas hydrate phase equilibria[J]. Industrial & Engineering Chemistry Research, 2000, 39(9): 3377-3386. |
| 29 | 饶永超, 王树立, 黄俊尧, 等. GO/鼠李糖脂复配体系下CO2水合物生成实验及逸度模型研究[J]. 实验室研究与探索, 2022, 41(11): 6-12. |
| RAO Yongchao, WANG Shuli, HUANG Junyao, et al. Experimental study and fugacity model CO2 on hydrate formation promoted by graphene oxide compounded with rhamnolipid[J]. Research and Exploration in Laboratory, 2022, 41(11): 6-12. | |
| 30 | 张炜, 李昊阳, 徐纯刚, 等. 气体水合物生成微观机理及分析方法研究进展[J]. 化工学报, 2022, 73(9): 3815-3827. |
| ZHANG Wei, LI Haoyang, XU Chungang, et al. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation[J]. CIESC Journal, 2022, 73(9): 3815-3827. | |
| 31 | LI Zheng, ZHONG Dongliang, LU Yiyu, et al. Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas[J]. Applied Energy, 2017, 199: 370-381. |
| [1] | WANG Yan, FENG Zhi, ZHANG Zhengyang, WU Hao, ZHANG Wenyu, YANG Lulu, ZHANG Wenshuo, YU Qinqin, LIU Wei, WANG Jinqing, KONG Ming. 3D morphology measurement method for droplets evaporation process based on LED off-axis digital holography [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1867-1875. |
| [2] | DING Hongbing, CHAI Xutian, WANG Shiwei, SONG Xinyu, SUN Hongjun. Experimental investigation on single and successive droplet impacts on flowing liquid film [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1888-1897. |
| [3] | WANG Lei, WANG Yan, GAN Yufeng, LUO Kai, FEI Hua, LUAN Yanding. Heat transfer characteristics of supercritical CO2 in different heated mini-channels under horizontal flow condition [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1945-1956. |
| [4] | YUAN Mengli, SONG Yuncai, LI Wenying, FENG Jie. Heat and mass transfer law of photothermal-driven lignite fixed-bed gasification process [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2008-2019. |
| [5] | WANG Meijie, WEI Liuke, JIA Baoyin, LAN Xingying, GAO Jinsen, SHI Xiaogang. Research progress on heat transfer enhancement of LNG open rack vaporizer [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1206-1217. |
| [6] | SHE Yonglu, XU Qiang, LUO Xinyi, NIE Tengfei, GUO Liejin. Effect of reaction temperature on bubble dynamics and mass transfer characteristics on photoanode surface [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1243-1252. |
| [7] | ZHANG Zhe, JI Xianbing, YANG Yuhao, LIU Jiaxuan, YAO Bocheng. Boiling heat transfer performance on multiscale structure sintered groove surface [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 669-676. |
| [8] | WANG Siyi, XU Jianliang, DAI Zhenghua, WU Guoyi, WANG Fuchen. Numerical simulation of chemical vapor deposition in polycrystalline silicon reduction furnace [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 706-716. |
| [9] | LI Haoyang, LI Hongwei, TAN Jianyu. Dynamic characteristics of boiling bubbles under transient oscillating heating conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 735-742. |
| [10] | BAI Yiran, ZHAI Yuling, DAI Jinghui, LI Zhouhang. Mechanisms of bubble nucleation and heat transfer enhancement in micro/nano-scale pooling boiling [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 743-751. |
| [11] | YIN Liaofei, YANG Zhonglin, ZHANG Kexin, ZHANG Zhiqiang, DANG Chao. Subcooled flow boiling heat transfer of low surface tension coolant SF-33 in open microchannels [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 764-772. |
| [12] | CAI Kainan, CHEN Jianyong, CHEN Ying, LUO Xianglong, LIANG Yingzong, HE Jiacheng. Thermodynamic performance of zeotropic mixtures in liquid-vapor separation plate condenser [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 48-56. |
| [13] | SUN Jianchen, YANG Jie, LI Jun, SUN Huidong, NIU Junmin, LIAO Yifei, REN Junying, SHANG Hui. Effect of catalyst particle arrangements on microwave heating [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 57-65. |
| [14] | ZHU Rukai, CHENG Xiao, LIU Jinya, WU Huiying. Flow and heat transfer characteristics and multi-objective optimization of pin-fin multi inclined jet microchannels [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 86-99. |
| [15] | YANG Huimin, DU Jiali, QUAN Yawen, WU Shengxiao, JIN Jiao, WU Feng. CFD simulation investigation of heat transfer characteristics in a downer bed with side nozzle [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 32-42. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |