1 |
TONG L S, TANG Y S. Boiling heat transfer and two-phase flow[M]. 2nd ed. Washington: Taylor & Francis, 1997.
|
2 |
YARIN L P, MOSYAK A, HETSRONI G. Fluid flow, heat transfer and boiling in micro-channels[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
|
3 |
CAREY Van P. Liquid-vapor phase-change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment[M]. Boca Raton: CRC Press, 2020.
|
4 |
TANJUNG Elvira F, ALUNDA Bernard O, LEE Yong Joong, et al. Experimental study of bubble behaviors and CHF on printed circuit board (PCB) in saturated pool water at various inclination angles[J]. Nuclear Engineering and Technology, 2018, 50(7): 1068-1078.
|
5 |
KANGUDE Prasad, SRIVASTAVA Atul. Experiments to understand bubble base evaporation mechanisms and heat transfer on nano-coated surfaces of varying wettability under nucleate pool boiling regime[J]. International Journal of Multiphase Flow, 2022, 152: 104098.
|
6 |
PATTANAYAK Bikash, GUPTA Ajay Kumar, KOTHADIA Hardik B. Critical heat flux and bubble behaviour study on differently oriented flat plates during pool boiling[J]. Nuclear Engineering and Design, 2022, 400: 112079.
|
7 |
DAVID T, MENDLER D, MOSYAK A, et al. Thermal management of time-varying high heat flux electronic devices[J]. Journal of Electronic Packaging, 2014, 136(2): 021003.
|
8 |
LEVIN A A, KHAN P V. Experimental observation of the maximum bubble diameter in non-stationary temperature field of subcooled boiling water flow[J]. International Journal of Heat and Mass Transfer, 2018, 124: 876-883.
|
9 |
LEVIN Anatoliy, KHAN Polina. Characteristics of nucleate boiling under conditions of pulsed heat release at the heater surface[J]. Applied Thermal Engineering, 2019, 149: 1215-1222.
|
10 |
LI J, PETERSON G P, CHENG P. Dynamic characteristics of transient boiling on a square platinum microheater under millisecond pulsed heating[J]. International Journal of Heat and Mass Transfer, 2008, 51(1/2): 273-282.
|
11 |
XU Li, XU Jinliang, WANG Bin, et al. Pool boiling heat transfer on the microheater surface with and without nanoparticles by pulse heating[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3309-3322.
|
12 |
陈钢. 微加热器表面微尺度沸腾特性及基于Gibbs自由能的成核热力学分析[D]. 上海: 上海交通大学, 2011.
|
|
CHEN Gang. Characteristic of microscale boiling over microheaters and thermodynamic analysis of nucleation based on Gibbs free energy[D]. Shanghai: Shanghai Jiao Tong University, 2011.
|
13 |
林曦鹏. PDMS微槽道内微加热片表面流动沸腾特性研究[D]. 北京: 清华大学, 2013.
|
|
LIN Xipeng. Flow boiling characteristics over microheaters in PDMS microchannels[D]. Beijing: Tsinghua University, 2013.
|
14 |
郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009.
|
|
GUO Zhaoli, ZHENG Chuguang. Theory and applications of lattice Boltzmann method[M]. Beijing: Science Press, 2009.
|
15 |
ZHANG Chuangde, CHEN Li, JI Wentao, et al. Lattice Boltzmann mesoscopic modeling of flow boiling heat transfer processes in a microchannel[J]. Applied Thermal Engineering, 2021, 197: 117369.
|
16 |
LI W X, LI Q, YU Y, et al. Nucleate boiling enhancement by structured surfaces with distributed wettability-modified regions: A lattice Boltzmann study[J]. Applied Thermal Engineering, 2021, 194: 117130.
|
17 |
GONG Shuai, ZHANG Lenan, CHENG Ping, et al. Understanding triggering mechanisms for critical heat flux in pool boiling based on direct numerical simulations[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120546.
|
18 |
张博瑞, 胡彦伟, 何玉荣. 仿生表面沸腾传热性能LBM数值模拟研究[J]. 工程热物理学报, 2024, 45(2): 453-459.
|
|
ZHANG Borui, HU Yanwei, HE Yurong. Numerical simulation on boiling heat transfer performance of bionic surface by LBM[J]. Journal of Engineering Thermophysics, 2024, 45(2): 453-459.
|
19 |
陈玉, 李志松, 林涛, 等. 波动加热下微通道流动沸腾的格子Boltzmann模拟[J]. 热科学与技术, 2023, 22(6): 599-605.
|
|
CHEN Yu, LI Zhisong, LIN Tao, et al. Micro-channel flow boiling by lattice Boltzmann model under fluctuating heating[J]. Journal of Thermal Science and Technology, 2023, 22(6): 599-605.
|
20 |
张浏斌, 单彦广, 戎志成. 基于LBM的均匀电场池沸腾单气泡动力学模拟[J]. 计算物理, 2022, 39(5): 537-548.
|
|
ZHANG Liubin, SHAN Yanguang, RONG Zhicheng. Single bubble dynamics in pool boiling under uniform electric field: LBM simulation[J]. Chinese Journal of Computational Physics, 2022, 39(5): 537-548.
|
21 |
XU Z G, QIN J, QU G M. Numerical and experimental study of pool boiling heat transfer mechanisms in V-shaped grooved porous metals[J]. International Journal of Thermal Sciences, 2022, 173: 107393.
|
22 |
GONG Shuai, CHENG Ping, QUAN Xiaojun. Two-dimensional mesoscale simulations of saturated pool boiling from rough surfaces. Part Ⅰ: Bubble nucleation in a single cavity at low superheats[J]. International Journal of Heat and Mass Transfer, 2016, 100: 927-937.
|
23 |
GONG Shuai, CHENG Ping. Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2015, 80: 206-216.
|
24 |
LI Q, KANG Q J, FRANCOIS M M, et al. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability[J]. International Journal of Heat and Mass Transfer, 2015, 85: 787-796.
|
25 |
LI Haoyang, LIU Bing, QIAO Lanqing, et al. Numerical investigation on boiling mechanism under periodic wave pulse heating by lattice Boltzmann[J]. Case Studies in Thermal Engineering, 2022, 35: 102102.
|
26 |
ZOU Qisu, HE Xiaoyi. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591-1598.
|
27 |
Timm KRÜGER, KUSUMAATMAJA Halim, KUZMIN Alexandr, et al. The lattice Boltzmann method: Principles and practice[M]. Switzerland: Springer, 2017
|
28 |
张朝阳. 多因素下池沸腾换热的格子Boltzmann数值研究[D]. 上海: 上海交通大学, 2018.
|
|
ZHANG Chaoyang. Numerical research of several effects on pool boiling heat transfter with laticce boltzmann method[D]. Shanghai: Shanghai Jiao Tong University, 2018.
|
29 |
MCGREW J L, BAMFORD F L, REHM T R. Marangoni flow: An additional mechanism in boiling heat transfer[J]. Science, 1966, 153(3740): 1106-1107.
|