Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 646-659.DOI: 10.16085/j.issn.1000-6613.2024-0188
• Chemical processes and equipment • Previous Articles Next Articles
LUO Xiaoping(), JIA Mengfan, LI Shizhen
Received:
2024-01-24
Revised:
2024-04-08
Online:
2025-03-10
Published:
2025-02-25
Contact:
LUO Xiaoping
通讯作者:
罗小平
作者简介:
罗小平(1967—),男,教授,博士生导师,研究方向为EHD强化沸腾传热及其控制、微通道换热器相变传热。E-mail:mmxpluo@scut.edu.cn。
基金资助:
CLC Number:
LUO Xiaoping, JIA Mengfan, LI Shizhen. Pressure drop characteristics of countercurrent microfluidic channels under synergistic effect of electric field and modified PVDF membrane phase separation structure[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 646-659.
罗小平, 贾梦帆, 李世珍. 电场和改性PVDF膜相分离结构协同作用下逆流微细通道压降特性[J]. 化工进展, 2025, 44(2): 646-659.
测量参数 | 最大不确定度/% | 测量参数 | 最大不确定度/% |
---|---|---|---|
G | 2.70 | xe,out | 2.41 |
q | 1.17 | ΔPtot | 0.50 |
Lsp | 2.76 |
测量参数 | 最大不确定度/% | 测量参数 | 最大不确定度/% |
---|---|---|---|
G | 2.70 | xe,out | 2.41 |
q | 1.17 | ΔPtot | 0.50 |
Lsp | 2.76 |
1 | Yuanzheng LYU, XIA Guodong, CHENG Lixin, et al. Experimental investigation into unstable two phase flow phenomena during flow boiling in multi-microchannels[J]. International Journal of Thermal Sciences, 2021, 166: 106985. |
2 | AL-ZAIDI Ali H, MAHMOUD Mohamed M, KARAYIANNIS Tassos G. Effect of aspect ratio on flow boiling characteristics in microchannels[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120587. |
3 | YUAN Yi, CHEN Li, ZHANG Chuangde, et al. Numerical investigation of flow boiling heat transfer in manifold microchannels[J]. Applied Thermal Engineering, 2022, 217: 119268. |
4 | ZHANG Xuelai, JI Zhe, WANG Jifen, et al. Research progress on structural optimization design of microchannel heat sinks applied to electronic devices[J]. Applied Thermal Engineering, 2023, 235: 121294. |
5 | PRAJAPATI Yogesh K, PATHAK Manabendra, KHAN Mohd Kaleem. A comparative study of flow boiling heat transfer in three different configurations of microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 85: 711-722. |
6 | CHENG Lixin. Fundamental issues of critical heat flux phenomena during flow boiling in microscale-channels and nucleate pool boiling in confined spaces[J]. Heat Transfer Engineering, 2013, 34(13): 1016-1043. |
7 | KARAYIANNIS T G, MAHMOUD M M. Flow boiling in microchannels: Fundamentals and applications[J]. Applied Thermal Engineering, 2017, 115: 1372-1397. |
8 | CRISCUOLO Gennaro, MARKUSSEN Wiebke Brix, MEYER Knud Erik, et al. High heat flux flow boiling of R1234yf, R1234ze (E) and R134a in high aspect ratio microchannels[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122215. |
9 | 晁浩杰, 王毅飞, 孙心茹, 等. 不同纳米流体在微通道内的流动传热特性研究[J]. 低温与超导, 2023, 51(4): 25-32. |
CHAO Haojie, WANG Yifei, SUN Xinru, et al. Study on flow and heat transfer characteristics of different nanofluids in the microchannel[J]. Cryogenics & Superconductivity, 2023, 51(4): 25-32. | |
10 | KÆRN Martin Ryhl, CRISCUOLO Gennaro, MEYER Knud Erik, et al. Critical heat flux characteristics of R1234yf, R1234ze(E) and R134a during saturated flow boiling in narrow high aspect ratio microchannels[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121840. |
11 | SINGH Varinder, KUKREJA Rajeev, SEHGAL Satbir S. Condensation heat transfer of R134a and R410A in multiport rectangular microchannels with different aspect ratio[J]. International Journal of Thermal Sciences, 2022, 179: 107696. |
12 | MASTRULLO R, MAURO A W, THOME J R,et al. Critical heat flux: Performance of R1234yf, R1234ze and R134a in an aluminum multi-minichannel heat sink at high saturation temperatures[J]. International Journal of Thermal Sciences, 2016, 106: 1-17. |
13 | WANG Tian hu, WU Hao chi, MENG Jing hui, et al. Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119217. |
14 | CHEN Chaowei, LI Fei, WANG Xinyu, et al. Improvement of flow and heat transfer performance of manifold microchannel with porous fins[J]. Applied Thermal Engineering, 2022, 206: 118129. |
15 | DENG Daxiang, ZENG Long, SUN Wei. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121332. |
16 | BAKTHAVATCHALAM Balaji, HABIB Khairul, SAIDUR R, et al. Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: A review on current and future perspective[J]. Journal of Molecular Liquids, 2020, 305: 112787. |
17 | DU Liang, HU Wenbo. An overview of heat transfer enhancement methods in microchannel heat sinks[J]. Chemical Engineering Science, 2023, 280: 119081. |
18 | HABIBISHANDIZ M, SAGHIR M Z. A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms[J]. Thermal Science and Engineering Progress, 2022, 30: 101267. |
19 | DEMELLO Andrew J. Control and detection of chemical reactions in microfluidic systems[J]. Nature, 2006, 442: 394-402. |
20 | S M Sohel MURSHED. Introductory chapter: Electronics cooling—An overview[M]//Electronics cooling. InTech, 2016. |
21 | JI Xianbing, LI Hongchuan, XU Jinliang, et al. Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices[J]. Experimental Thermal and Fluid Science, 2017, 85: 119-131. |
22 | ALAM Tabish, KIM Man-Hoe. A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 813-839. |
23 | BHAVNANI Sushil, NARAYANAN Vinod, QU Weilin, et al. Boiling augmentation with micro/nanostructured surfaces: Current status and research outlook[J]. Nanoscale and Microscale Thermophysical Engineering, 2014, 18(3): 197-222. |
24 | JOTHI PRAKASH C G, PRASANTH R. Enhanced boiling heat transfer by nano structured surfaces and nanofluids[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 4028-4043. |
25 | SHEIKHOLESLAMI Mohsen, Mofid GORJI-BANDPY, GANJI Davood Domiri. Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 444-469. |
26 | DERAMI Hamed Gholami, VUNDAVILLI Ravindra, DARABI Jeff. Experimental and computational study of gas bubble removal in a microfluidic system using nanofibrous membranes[J]. Microsystem Technologies, 2017, 23: 2685-2698. |
27 | MENG Dennis Desheng, CUBAUD Thomas, Chih-Ming HO, et al. A methanol-tolerant gas-venting microchannel for a microdirect methanol fuel cell[J]. Journal of Microelectromechanical Systems, 2007, 16(6): 1403-1410. |
28 | MOHIUDDIN Ahmed, LOGANATHAN Raamkumar, GEDUPUDI Sateesh. Experimental investigation of flow boiling in rectangular mini/micro-channels of different aspect ratios without and with vapour venting membrane[J]. Applied Thermal Engineering, 2020, 168: 114837. |
29 | WANG Ye, LIN Yilin, YANG Guang, et al. Flow physics of wicking into woven screens with hybrid micro-/nanoporous structures[J]. Langmuir, 2021, 37(7): 2289-2297. |
30 | PRIY Akash, Sumit RAJ, PATHAK Manabendra, et al. A hydrophobic porous substrate-based vapor venting technique for mitigating flow boiling instabilities in microchannel heat sink[J]. Applied Thermal Engineering, 2022, 216: 119138. |
31 | YIN Liaofei, SUN Mingmei, JIANG Peixue, et al. Heat transfer coefficient and pressure drop of water flow boiling in porous open microchannels heat sink[J]. Applied Thermal Engineering, 2023, 218: 119361. |
32 | APREOTESI Mario, PENCE Deborah, LIBURDY James. Vapor extraction from flow boiling in a fractal-like branching heat sink[C]// International Electronic Packaging Technical Conference and Exhibition, 2010: 321-328. |
33 | 罗小平, 周家玉, 李桂中. 相分离结构微细通道流动沸腾压降分析与可视化[J]. 化工进展, 2023, 42(12): 6157-6170. |
LUO Xiaoping, ZHOU Jiayu, LI Guizhong. Analysis and visualization of flow boiling pressure drop in microchannels with phase separation structure[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6157-6170. | |
34 | TANG Jinchen, HU Xuegong, YU Yingying. Electric field effect on the heat transfer enhancement in a vertical rectangular microgrooves heat sink[J]. International Journal of Thermal Sciences, 2020, 150: 106222. |
35 | LI Yun, WU Huiying, YAO Yuanpeng. Enhanced flow boiling heat transfer and suppressed boiling instability in counter-flow stepped microchannels[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123025. |
36 | JIANG Xingchi, ZHANG Shiwei, LI Yuanjie, et al. High performance heat sink with counter flow diverging microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120344. |
37 | YOUNG Thomas, An essay on the cohesion of fluids[J]. The Royal Society, 1805, 95: 65-87. |
38 | AHMAD N A, LEO Choe Peng, AHMAD Abdul Latif, et al. Membranes with great hydrophobicity: A review on preparation and characterization[J]. Separation & Purification Reviews, 2015, 44(2): 109-134. |
39 | KHAYET Mohamed. Membranes and theoretical modeling of membrane distillation: A review[J]. Advances in Colloid and Interface Science, 2011, 164(1/2): 56-88. |
40 | WU Xiaoqiong, WU Xing, WANG Tingyu, et al. Omniphobic surface modification of electrospun nanofiber membrane via vapor deposition for enhanced anti-wetting property in membrane distillation[J]. Journal of Membrane Science, 2020, 606: 118075. |
41 | TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
42 | MANCIN Simone, ZILIO Claudio, CAVALLINI Alberto, et al. Pressure drop during air flow in aluminum foams[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3121-3130. |
43 | 罗小平, 彭子哲, 刘倩, 等. 电场对微细通道内R141b制冷剂流动沸腾压降的影响[J]. 农业工程学报, 2020, 36(1): 257-265. |
LUO Xiaoping, PENG Zizhe, LIU Qian, et al. Effect of electric field on flow boiling pressure drop characteristics of R141b in microchannel[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 257-265. | |
44 | LOYOLA LAVÍN Francisco, KANIZAWA Fabio Toshio, RIBATSKI Gherhardt. Analyses of the effects of channel inclination and rotation on two-phase flow characteristics and pressure drop in a rectangular channel[J]. Experimental Thermal and Fluid Science, 2019, 109: 109850. |
45 | MOFFAT Robert J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
46 | KLAUSNER J F, MEI R, BERNHARD D M, et al. Vapor bubble departure in forced convection boiling[J]. International Journal of Heat and Mass Transfer, 1993, 36(3): 651-662. |
47 | WEBB R L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design[J]. International Journal of Heat and Mass Transfer, 1981, 24(4): 715-726. |
48 | QU Weilin, MUDAWAR Issam. Flow boiling heat transfer in two-phase micro-channel heat sinks—I. Experimental investigation and assessment of correlation methods[J]. International Journal of Heat and Mass Transfer, 2003, 46(15): 2755-2771. |
[1] | CHEN Kexin, LI Xi, CHANG Fucheng, WU Xiaoyi, LOU Jiacheng, LI Huixiong. Investigation on pressure drop and characteristics of flow-pattern transition of steam-water two-phase flows in helically coiled tubes [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 613-624. |
[2] | CAI Kainan, CHEN Jianyong, CHEN Ying, LUO Xianglong, LIANG Yingzong, HE Jiacheng. Thermodynamic performance of zeotropic mixtures in liquid-vapor separation plate condenser [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 48-56. |
[3] | ZHANG Qing, HUANG Lihao, TAO Leren, ZHU Tianyi, JIN Yunfei. Experimental on the flow boiling heat transfer characteristics of R513A insides horizontal tubes with different thread structures [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 134-143. |
[4] | LI Yi, LIANG Lisi, ZHANG Lixing, QIAO Jiangyu, CUI Zhongyi, CHEN Jin, XU Qiang, ZHAO Chen. Simultaneous desulfurization and denitrification with hypochlorite oxidant [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5282-5289. |
[5] | SONG Zhanlong, TANG Tao, PAN Wei, ZHAO Xiqiang, SUN Jing, MAO Yanpeng, WANG Wenlong. Micro-nano bubbles enhance ozone oxidation and degradation of wastewater containing phenol [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4614-4623. |
[6] | JING Peiyu, ZHU Yu, SUN Jie, HUANG Wanni, GUO Yuying, WANG Yating, ZHENG Zhiyi, DING Wei. Analysis of drag reduction characteristics of water ring transportation in high viscosity oil horizontal pipeline [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2996-3006. |
[7] | ZHAO Wei, JIANG Yuhan, LI Zhen, LI Yihong, ZHOU Anning, WANG Hong. Mechanism of the impact of hydrogen/oxygen bubbles in the separation and hydrogen production of coal macerals electroflotation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2428-2435. |
[8] | WU Xining, ZHANG Ning, QIN Jiamin, XU Long, WEI Chaoyang, MA Xiaoxun. Performance of methanol-based nanofluids with enhanced CO2 absorption under low cooling demand [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2811-2822. |
[9] | HE Fachao, LIU Hailong, LI Changfeng, WANG Junfeng. Effect of non-uniform electric field on bubble dispersion characteristics in high-viscosity fluid [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1774-1782. |
[10] | ZENG Sirui, KONG Ming. Phase distribution measurement model of gas-liquid two-phase flow based on GBDT [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 800-807. |
[11] | YANG Zhilong, TIAN Wenbin, ZHANG Zhen, WANG Zhiying, WANG Yiwei. Geometric features recognition and parameters extraction of bubbles in single-hole air bleed [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 808-817. |
[12] | WANG Lei, CAO Xiongjin, LUO Kai, WANG Yan, FEI Hua. Pressure drop characteristics of supercritical CO2 in heating mini-channel with different flow directions [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 830-843. |
[13] | WANG Yue, SUN Kai, LIU Yan, CHEN Long, ZHU Xiaoyu, XU Chuanlong. Light field bubble tracking velocimetry based on the global bubble position iteration and polar coordinate system similarity algorithm [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 844-854. |
[14] | YAO Fuchun, BI Yingying, LIU Chao, TANG Chen, LI Zeying, ZHANG Yaozong, SUN Xiaoming. Matrix analysis method to optimize the ozone membrane contact mass transfer technology [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6553-6562. |
[15] | ZHAI Linxiao, CUI Yizhou, LI Chengxiang, SHI Xiaogang, GAO Jinsen, LAN Xingying. Research and application process of microbubble generator [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 111-123. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 10
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |