Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6553-6562.DOI: 10.16085/j.issn.1000-6613.2023-1864
• Resources and environmental engineering • Previous Articles
YAO Fuchun1,2(), BI Yingying1(), LIU Chao1,2, TANG Chen2, LI Zeying1, ZHANG Yaozong2(), SUN Xiaoming1()
Received:
2023-10-23
Revised:
2023-11-10
Online:
2024-12-07
Published:
2024-11-15
Contact:
ZHANG Yaozong, SUN Xiaoming
姚福春1,2(), 毕莹莹1(), 刘超1,2, 唐晨2, 李泽莹1, 张耀宗2(), 孙晓明1()
通讯作者:
张耀宗,孙晓明
作者简介:
姚福春(1996—),男,硕士研究生,研究方向为水污染控制与废水资源化。E-mail:386439071@qq.com基金资助:
CLC Number:
YAO Fuchun, BI Yingying, LIU Chao, TANG Chen, LI Zeying, ZHANG Yaozong, SUN Xiaoming. Matrix analysis method to optimize the ozone membrane contact mass transfer technology[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6553-6562.
姚福春, 毕莹莹, 刘超, 唐晨, 李泽莹, 张耀宗, 孙晓明. 矩阵分析法优化臭氧膜接触传质技术[J]. 化工进展, 2024, 43(11): 6553-6562.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1864
参数 | 数值 |
---|---|
膜 | |
内径/mm | 0.5 |
外径/mm | 1.5 |
膜厚/mm | 0.5 |
表面孔径分布/μm | 2~10 |
接触角/(°) | 117.85 |
起泡压力/MPa | 0.025 |
膜接触反应器 | |
膜丝数量/根 | 20 |
有效长度/mm | 500 |
有效接触面积/mm2 | 47123.9 |
参数 | 数值 |
---|---|
膜 | |
内径/mm | 0.5 |
外径/mm | 1.5 |
膜厚/mm | 0.5 |
表面孔径分布/μm | 2~10 |
接触角/(°) | 117.85 |
起泡压力/MPa | 0.025 |
膜接触反应器 | |
膜丝数量/根 | 20 |
有效长度/mm | 500 |
有效接触面积/mm2 | 47123.9 |
序号 | A/mL∙min-1 | B/mg∙L-1 | C | D/mg∙L-1 |
---|---|---|---|---|
1 | 100 | 40 | 4 | 0 |
2 | 150 | 60 | 6 | 10 |
3 | 200 | 80 | 8 | 20 |
4 | 250 | 100 | 10 | 30 |
序号 | A/mL∙min-1 | B/mg∙L-1 | C | D/mg∙L-1 |
---|---|---|---|---|
1 | 100 | 40 | 4 | 0 |
2 | 150 | 60 | 6 | 10 |
3 | 200 | 80 | 8 | 20 |
4 | 250 | 100 | 10 | 30 |
搅拌速度/r·min-1 | 膜传质 | 气泡传质 | ||
---|---|---|---|---|
KLa/min-1 | R2 | KLa/min-1 | R2 | |
0 | 0.0024 | 0.9952 | 0.0533 | 0.9915 |
500 | 0.0287 | 0.9939 | 0.0677 | 0.9931 |
1000 | 0.0807 | 0.9903 | 0.0791 | 0.9939 |
1500 | 0.0806 | 0.9908 | 0.0808 | 0.9954 |
搅拌速度/r·min-1 | 膜传质 | 气泡传质 | ||
---|---|---|---|---|
KLa/min-1 | R2 | KLa/min-1 | R2 | |
0 | 0.0024 | 0.9952 | 0.0533 | 0.9915 |
500 | 0.0287 | 0.9939 | 0.0677 | 0.9931 |
1000 | 0.0807 | 0.9903 | 0.0791 | 0.9939 |
1500 | 0.0806 | 0.9908 | 0.0808 | 0.9954 |
编号 | A | B | C | D | O3传质通量(E)/mg∙m-2∙min-1 | O3吸收率(F)/% |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 33.40 | 39.35 |
2 | 1 | 2 | 2 | 2 | 59.82 | 46.98 |
3 | 1 | 3 | 3 | 3 | 91.57 | 53.94 |
4 | 1 | 4 | 4 | 4 | 124.61 | 58.72 |
5 | 2 | 1 | 2 | 3 | 67.80 | 53.25 |
6 | 2 | 2 | 1 | 4 | 94.73 | 49.60 |
7 | 2 | 3 | 4 | 1 | 71.49 | 28.08 |
8 | 2 | 4 | 3 | 2 | 105.23 | 33.06 |
9 | 3 | 1 | 3 | 4 | 85.69 | 50.48 |
10 | 3 | 2 | 4 | 3 | 113.45 | 44.55 |
11 | 3 | 3 | 1 | 2 | 100.29 | 29.54 |
12 | 3 | 4 | 2 | 1 | 107.84 | 25.41 |
13 | 4 | 1 | 4 | 2 | 78.62 | 37.05 |
14 | 4 | 2 | 3 | 1 | 60.85 | 19.12 |
15 | 4 | 3 | 2 | 4 | 133.00 | 31.34 |
16 | 4 | 4 | 1 | 3 | 120.43 | 22.70 |
编号 | A | B | C | D | O3传质通量(E)/mg∙m-2∙min-1 | O3吸收率(F)/% |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 33.40 | 39.35 |
2 | 1 | 2 | 2 | 2 | 59.82 | 46.98 |
3 | 1 | 3 | 3 | 3 | 91.57 | 53.94 |
4 | 1 | 4 | 4 | 4 | 124.61 | 58.72 |
5 | 2 | 1 | 2 | 3 | 67.80 | 53.25 |
6 | 2 | 2 | 1 | 4 | 94.73 | 49.60 |
7 | 2 | 3 | 4 | 1 | 71.49 | 28.08 |
8 | 2 | 4 | 3 | 2 | 105.23 | 33.06 |
9 | 3 | 1 | 3 | 4 | 85.69 | 50.48 |
10 | 3 | 2 | 4 | 3 | 113.45 | 44.55 |
11 | 3 | 3 | 1 | 2 | 100.29 | 29.54 |
12 | 3 | 4 | 2 | 1 | 107.84 | 25.41 |
13 | 4 | 1 | 4 | 2 | 78.62 | 37.05 |
14 | 4 | 2 | 3 | 1 | 60.85 | 19.12 |
15 | 4 | 3 | 2 | 4 | 133.00 | 31.34 |
16 | 4 | 4 | 1 | 3 | 120.43 | 22.70 |
参数 | A | B | C | D |
---|---|---|---|---|
O3传质通量 | ||||
K1 | 309.4 | 265.5 | 348.8 | 273.6 |
K2 | 339.3 | 328.8 | 368.5 | 344.0 |
K3 | 407.3 | 396.3 | 343.3 | 393.2 |
K4 | 392.9 | 458.1 | 388.2 | 438.0 |
k1 | 77.3 | 66.4 | 87.2 | 68.4 |
k2 | 84.8 | 82.2 | 92.1 | 86.0 |
k3 | 101.8 | 99.1 | 85.8 | 98.3 |
k4 | 98.2 | 114.5 | 97.0 | 109.5 |
R1 | 24.5 | 48.1 | 11.2 | 41.1 |
O3吸收率 | ||||
Z1 | 1.9899 | 1.8013 | 1.4119 | 1.1195 |
Z2 | 1.6399 | 1.6025 | 1.5698 | 1.4663 |
Z3 | 1.4997 | 1.4289 | 1.5659 | 1.7444 |
Z4 | 1.1020 | 1.3989 | 1.6840 | 1.9013 |
z1 | 0.4975 | 0.4503 | 0.3530 | 0.2799 |
z2 | 0.4100 | 0.4006 | 0.3925 | 0.3666 |
z3 | 0.3749 | 0.3572 | 0.3915 | 0.4361 |
z4 | 0.2755 | 0.3497 | 0.4210 | 0.4753 |
R2 | 0.2220 | 0.1006 | 0.0680 | 0.1955 |
参数 | A | B | C | D |
---|---|---|---|---|
O3传质通量 | ||||
K1 | 309.4 | 265.5 | 348.8 | 273.6 |
K2 | 339.3 | 328.8 | 368.5 | 344.0 |
K3 | 407.3 | 396.3 | 343.3 | 393.2 |
K4 | 392.9 | 458.1 | 388.2 | 438.0 |
k1 | 77.3 | 66.4 | 87.2 | 68.4 |
k2 | 84.8 | 82.2 | 92.1 | 86.0 |
k3 | 101.8 | 99.1 | 85.8 | 98.3 |
k4 | 98.2 | 114.5 | 97.0 | 109.5 |
R1 | 24.5 | 48.1 | 11.2 | 41.1 |
O3吸收率 | ||||
Z1 | 1.9899 | 1.8013 | 1.4119 | 1.1195 |
Z2 | 1.6399 | 1.6025 | 1.5698 | 1.4663 |
Z3 | 1.4997 | 1.4289 | 1.5659 | 1.7444 |
Z4 | 1.1020 | 1.3989 | 1.6840 | 1.9013 |
z1 | 0.4975 | 0.4503 | 0.3530 | 0.2799 |
z2 | 0.4100 | 0.4006 | 0.3925 | 0.3666 |
z3 | 0.3749 | 0.3572 | 0.3915 | 0.4361 |
z4 | 0.2755 | 0.3497 | 0.4210 | 0.4753 |
R2 | 0.2220 | 0.1006 | 0.0680 | 0.1955 |
指标 | 实验因素 | 平方和 | 自由度 | 均方 | F | 显著性 |
---|---|---|---|---|---|---|
臭氧传质 通量 | A | 1572.042 | 3 | 524.014 | 4.751 | 0.116 |
B | 5206.517 | 3 | 1735.506 | 15.735 | 0.024 | |
C | 311.908 | 3 | 103.969 | 0.943 | 0.519 | |
D | 3724.449 | 3 | 1241.483 | 11.256 | 0.039 | |
臭氧吸收率 | A | 0.101 | 3 | 0.034 | 16.799 | 0.022 |
B | 0.026 | 3 | 0.009 | 4.283 | 0.132 | |
C | 0.009 | 3 | 0.003 | 1.554 | 0.363 | |
D | 0.088 | 3 | 0.029 | 14.672 | 0.027 |
指标 | 实验因素 | 平方和 | 自由度 | 均方 | F | 显著性 |
---|---|---|---|---|---|---|
臭氧传质 通量 | A | 1572.042 | 3 | 524.014 | 4.751 | 0.116 |
B | 5206.517 | 3 | 1735.506 | 15.735 | 0.024 | |
C | 311.908 | 3 | 103.969 | 0.943 | 0.519 | |
D | 3724.449 | 3 | 1241.483 | 11.256 | 0.039 | |
臭氧吸收率 | A | 0.101 | 3 | 0.034 | 16.799 | 0.022 |
B | 0.026 | 3 | 0.009 | 4.283 | 0.132 | |
C | 0.009 | 3 | 0.003 | 1.554 | 0.363 | |
D | 0.088 | 3 | 0.029 | 14.672 | 0.027 |
条件 | 进气流量/mL∙min-1 | O3进气浓度/mg∙L-1 | 初始pH | 污染物浓度/mg∙L-1 |
---|---|---|---|---|
臭氧传质通量最优单因素 | A3 | B4 | C4 | D4 |
臭氧吸收率最优单因素 | A1 | B1 | C4 | D4 |
臭氧传质通量k值偏差率/% | 24.07 | 42.01 | 0 | 0 |
臭氧吸收率z值偏差率/% | 24.64 | 22.34 | 0 | 0 |
最优传质条件 | A1B4C4D4 |
条件 | 进气流量/mL∙min-1 | O3进气浓度/mg∙L-1 | 初始pH | 污染物浓度/mg∙L-1 |
---|---|---|---|---|
臭氧传质通量最优单因素 | A3 | B4 | C4 | D4 |
臭氧吸收率最优单因素 | A1 | B1 | C4 | D4 |
臭氧传质通量k值偏差率/% | 24.07 | 42.01 | 0 | 0 |
臭氧吸收率z值偏差率/% | 24.64 | 22.34 | 0 | 0 |
最优传质条件 | A1B4C4D4 |
指标 | 实验 1 | 实验 2 | 实验 3 | 均值 |
---|---|---|---|---|
O3传质通量/mg∙m-2∙min-1 | 171.2 | 170.7 | 172.0 | 171.3 |
O3吸收率/% | 80.66 | 80.43 | 81.03 | 80.71 |
指标 | 实验 1 | 实验 2 | 实验 3 | 均值 |
---|---|---|---|---|
O3传质通量/mg∙m-2∙min-1 | 171.2 | 170.7 | 172.0 | 171.3 |
O3吸收率/% | 80.66 | 80.43 | 81.03 | 80.71 |
1 | VAN AKEN P, LAMBERT N, VAN DEN BROECK R, et al. Advances in ozonation and biodegradation processes to enhance chlorophenol abatement in multisubstrate wastewaters: A review[J]. Environmental Science: Water Research & Technology, 2019, 5(3): 444-481. |
2 | 年国伟. 压力式臭氧催化氧化苯酚废水研究[D]. 扬州: 扬州大学, 2022. |
NIAN Guowei. Catalytic oxidation of phenol wastewater by pressure ozonation[D]. Yangzhou: Yangzhou University, 2022. | |
3 | JABESA Abdisa, GHOSH Pallab. A comparative study on the removal of dimethyl sulfoxide from water using microbubbles and millibubbles of ozone[J]. Journal of Water Process Engineering, 2021, 40: 101937. |
4 | MAO Yuqin, QI Shengqi, GUO Xianfen, et al. Optimization of ozone dosage in an ozone contact tank using a numerical model[J]. Environmental Science and Pollution Research, 2021, 28(33): 44987-44997. |
5 | ROBEY Nicole M, SILVA Bianca F DA, ANNABLE Michael D, et al. Concentrating per- and polyfluoroalkyl substances (PFAS) in municipal solid waste landfill leachate using foam separation[J]. Environmental Science & Technology, 2020, 54(19): 12550-12559. |
6 | JANKNECHT P, WILDERER P A, PICARD C, et al. Bubble-free ozone contacting with ceramic membranes for wet oxidative treatment[J]. Chemical Engineering & Technology, 2000, 23(8): 674-677. |
7 | JANKNECHT P, WILDERER P A, PICARD C, et al. Ozone-water contacting by ceramic membranes[J]. Separation and Purification Technology, 2001, 25(1/2/3): 341-346. |
8 | SOHAIB Qazi, MUHAMMAD Amir, YOUNAS Mohammad, et al. Modeling pre-combustion CO2 capture with tubular membrane contactor using ionic liquids at elevated temperatures[J]. Separation and Purification Technology, 2020, 241: 116677. |
9 | ROSLI Aishah, AHMAD Abdul Latif, Siew Chun LOW. Enhancing membrane hydrophobicity using silica end-capped with organosilicon for CO2 absorption in membrane contactor[J]. Separation and Purification Technology, 2020, 251: 117429. |
10 | JU Jingge, FEJJARI Kaouthar, CHENG Yi, et al. Engineering hierarchically structured superhydrophobic PTFE/POSS nanofibrous membranes for membrane distillation[J]. Desalination, 2020, 486: 114481. |
11 | SCHMITT Alice, MENDRET Julie, BROSILLON Stephan. Evaluation of an ozone diffusion process using a hollow fiber membrane contactor[J]. Chemical Engineering Research and Design, 2022, 177: 291-303. |
12 | BEIN Emil, ZUCKER Ines, DREWES Jörg E, et al. Ozone membrane contactors for water and wastewater treatment: A critical review on materials selection, mass transfer and process design[J]. Chemical Engineering Journal, 2021, 413: 127393. |
13 | LI Kuiling, ZHANG Yong, XU Lili, et al. Mass transfer and interfacial reaction mechanisms in a novel electro-catalytic membrane contactor for wastewater treatment by O3 [J]. Applied Catalysis B: Environmental, 2020, 264: 118512. |
14 | CONG Menglong, ZHANG Shanshan, SUN Dandan, et al. Optimization of preparation of foamed concrete based on orthogonal experiment and range analysis[J]. Frontiers in Materials, 2021, 8: 778173. |
15 | HARVEY Philip, BIGDELI Tim, LI Yuli, et al. Tu72. Genomic analyses of schizophrenia and bipolar patients with very poor outcomes[J]. European Neuropsychopharmacology, 2021, 51: e134-e135. |
16 | WANG Xing, LIU Xiaomin, ZHANG Chuhua. Parametric optimization and range analysis of Organic Rankine Cycle for binary-cycle geothermal plant[J]. Energy Conversion and Management, 2014, 80: 256-265. |
17 | VELINA Mara, VALEINIS Janis, GRECO Luca, et al. Empirical likelihood-based ANOVA for trimmed means[J]. International Journal of Environmental Research and Public Health, 2016, 13(10): 953. |
18 | DE MELO Márcio Braga, Dimitri DALDEGAN-BUENO, OLIVEIRA Maria Gabriela Menezes, et al. Beyond ANOVA and MANOVA for repeated measures: Advantages of generalized estimated equations and generalized linear mixed models and its use in neuroscience research[J]. The European journal of neuroscience, 2022, 56(12): 6089-6098. |
19 | 蒋凌燕, 成金曦, 夏东, 等. 矩阵分析法优化花椒树脂提取工艺研究[J]. 中国油脂, 2020, 45(10): 106-114. |
JIANG Lingyan, CHENG Jinxi, XIA Dong, et al. Optimization of extracting Zanthoxylum bungeanum resin by matrix analysis method[J]. China Oils and Fats, 2020, 45(10): 106-114. | |
20 | 赵风文, 胡建华, 曾平平, 等. 基于正交试验的碱基-磷石膏胶结充填体配比优化[J]. 中国有色金属学报, 2021, 31(4): 1096-1105. |
ZHAO Fengwen, HU Jianhua, ZENG Pingping, et al. Optimization research of base-phosphogypsum cemented backfill ratio based on orthogonal test[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(4): 1096-1105. | |
21 | 闫红杰, 夏韬, 刘柳, 等. 高铅渣还原炉内气液两相流的数值模拟与结构优化[J]. 中国有色金属学报, 2014, 24(10): 2642-2651. |
YAN Hongjie, XIA Tao, LIU Liu, et al. Numerical simulation and structural optimization of gas-liquid two-phase flow in reduction furnace of lead-rich slag[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(10): 2642-2651. | |
22 | BELTRÁN Fernando J. 水和废水的臭氧反应动力学[M]. 周云瑞,译. 北京: 中国建筑工业出版社, 2007. |
BELTRÁN Fernando J. Ozone reaction kinetics for water and wastewater systems[M]. ZHOU Yunduan, trans. Beijing: China Architecture & Building Press, 2007. | |
23 | WANG Bing, SHI Wen, ZHANG Huan, et al. Promoting the ozone-liquid mass transfer through external physical fields and their applications in wastewater treatment: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106115. |
24 | WEAVERS Linda K, HOFFMANN Michael R. Sonolytic decomposition of ozone in aqueous solution: mass transfer effects[J]. Environmental Science & Technology, 1998, 32(2): 3941-3947. |
25 | CUONG Le Cao, NGHI Nguyen Hoang, DIEU Tran Vinh, et al. Influence of oxygen concentration, feed gas flow rate and air humidity on the output of ozone produced by corona discharge[J]. Vietnam Journal of Chemistry, 2019, 57(5): 604-608. |
26 | YULIANTO E, RESTIWIJAYA M, SASMITA E, et al. Power analysis of ozone generator for high capacity production[J]. Journal of Physics: Conference Series, 2019, 1170: 012013. |
27 | ZHANG Yong, LI Kuiling, WANG Jun, et al. Ozone mass transfer behaviors on physical and chemical absorption for hollow fiber membrane contactors[J]. Water Science and Technology, 2017, 76(6): 1360-1369. |
28 | XIONG Wei, CUI Weihua, LI Rui, et al. Mineralization of phenol by ozone combined with activated carbon: Performance and mechanism under different pH levels[J]. Environmental Science and Ecotechnology, 2020, 1: 100005. |
[1] | LIU Qingchen, WANG Huawei, LIU Rongwen, ZOU Rongxue, ZHAN Meili, WANG Yanan, SUN Yingjie, XIA Zhengqi, SHAN Bin. Efficiency of coagulation-ozone oxidation on the removal of organic micropollutants from biotreated leachate [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 545-554. |
[2] | LIANG Yongqi, TANG Jian, XIA Heng, CHEN Jiakun, QIAO Junfei. Modeling and analysis of particulate matter concentration in incinerator under benchmark conditions based on coupled numerical simulation [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 106-120. |
[3] | HU Junjie, HUANG Xingjun, LEI Cheng, YANG Min, LAN Yuanxiao, LUO Jianhong. Advanced treatment of small molecular organic in shale gas produced water [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4674-4680. |
[4] | SONG Zhanlong, TANG Tao, PAN Wei, ZHAO Xiqiang, SUN Jing, MAO Yanpeng, WANG Wenlong. Micro-nano bubbles enhance ozone oxidation and degradation of wastewater containing phenol [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4614-4623. |
[5] | YAO Fuchun, BI Yingying, TANG Chen, DU Minghui, LI Zeying, ZHANG Yaozong, SUN Xiaoming. Analysis of the mass transfer mechanism in a hollow fiber membrane ozone contact reactor [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1089-1097. |
[6] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[7] | ZHAN Yong, WANG Hui, WEI Tingting, ZHU Xingyu, WANG Xiankai, CHEN Sisi, DONG Bin. In situ reduction effect of Mn2+ enhanced ozone conditioning on sludge in biological treatment process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3253-3260. |
[8] | ZHU Hao, LIU Hanfei, GAO Yuan, BAI Rongrong, NI Songbo, HUANG Yiping, LI Qingtong, LI Xiaodong, HAN Weiqing. Parameter optimization of jet aeration in catalytic ozonation system and analysis of stage oxidation of phenol [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2717-2723. |
[9] | CHEN Jiakun, TANG Jian, XIA Heng, QIAO Junfei. Numerical simulation of dioxin emission concentration in grate furnace incineration processes for municipal solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1061-1072. |
[10] | YIN Xiaoyun, FU Linhao, LI Jiayi, CHENG Sijie, JING Jiaqiang, MASTOBAEV Boris N, SUN Jie. Analysis of restart-up pressure drop characteristics of heavy oil-water ring transportation pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5669-5679. |
[11] | MA Yunfei, WANG Jianbing, JIA Chaomin, XING Yixin, KE Shu, ZHANG Xian. Recent progress of kinetics model and reactor modeling of ozonation [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 556-570. |
[12] | ZHU Hao, LIU Hanfei, JI Yufan, LI Shuangtao, HUANG Yiping, GAO Yuan, WEI Zhenhao, ZHU Kai, HAN Weiqing, WEI Kajia. Research advance and mechanism analysis of catalytic ozonation of phenolic compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 545-555. |
[13] | LIU Hanfei, ZHU Hao, LI Shuangtao, JI Yufan, HUANG Yiping, HUANG Jingjing, NI Songbo, NI Zeyu. Preparation of attapulgite supported catalyst and its efficiency in treating low concentration organic matters [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5103-5108. |
[14] | ZHENG Jin, HAN Ruirui, LI Dandan, WANG Xinyu, GAO Chunyang, DU Xianyuan, ZHANG XiaoFei, ZOU Dexun. Joint remediation of petroleum contaminated soil by urea peroxide with microorganism [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5085-5093. |
[15] | CAO Dongdong, LI Xingchun, XUE Ming. Emission characteristics and photochemical reactivity of volatile organic compounds from petrochemical intermediate storage tanks [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3974-3982. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |