Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3974-3982.DOI: 10.16085/j.issn.1000-6613.2021-1842
• Resources and environmental engineering • Previous Articles Next Articles
CAO Dongdong1,2(), LI Xingchun1, XUE Ming1
Received:
2021-08-27
Revised:
2021-12-13
Online:
2022-07-23
Published:
2022-07-25
Contact:
CAO Dongdong
通讯作者:
曹冬冬
基金资助:
CLC Number:
CAO Dongdong, LI Xingchun, XUE Ming. Emission characteristics and photochemical reactivity of volatile organic compounds from petrochemical intermediate storage tanks[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3974-3982.
曹冬冬, 李兴春, 薛明. 石化中间储罐挥发性有机物排放特征与反应活性[J]. 化工进展, 2022, 41(7): 3974-3982.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1842
序号 | 中间储罐 | 所属单元区 | 采样位置及排放环节 |
---|---|---|---|
1 | 催化蜡油 | 炼油厂油品车间 | 呼吸阀,大呼吸过程 |
2 | 催化油浆 | 炼油厂油品车间 | 呼吸阀,大呼吸过程 |
3 | 管线吹扫污油 | 炼炼油厂油品车间 | 呼吸阀,大呼吸过程 |
4 | 炼油污油 | 炼油厂常减压车间 | 呼吸阀,大呼吸过程 |
5 | 焦化原料 | 炼油厂焦化车间 | 呼吸阀,大呼吸过程 |
6 | 焦化污油 | 炼油厂焦化车间 | 呼吸阀,大呼吸过程 |
7 | 乙烯裂解重油 | 乙烯厂 | 呼吸阀,大呼吸过程 |
8 | 乙烯裂解调和油 | 乙烯厂 | 呼吸阀,大呼吸过程 |
9 | 炼油污水污油 | 炼油污水厂 | 呼吸阀,大呼吸过程 |
序号 | 中间储罐 | 所属单元区 | 采样位置及排放环节 |
---|---|---|---|
1 | 催化蜡油 | 炼油厂油品车间 | 呼吸阀,大呼吸过程 |
2 | 催化油浆 | 炼油厂油品车间 | 呼吸阀,大呼吸过程 |
3 | 管线吹扫污油 | 炼炼油厂油品车间 | 呼吸阀,大呼吸过程 |
4 | 炼油污油 | 炼油厂常减压车间 | 呼吸阀,大呼吸过程 |
5 | 焦化原料 | 炼油厂焦化车间 | 呼吸阀,大呼吸过程 |
6 | 焦化污油 | 炼油厂焦化车间 | 呼吸阀,大呼吸过程 |
7 | 乙烯裂解重油 | 乙烯厂 | 呼吸阀,大呼吸过程 |
8 | 乙烯裂解调和油 | 乙烯厂 | 呼吸阀,大呼吸过程 |
9 | 炼油污水污油 | 炼油污水厂 | 呼吸阀,大呼吸过程 |
烷烃 | 烯烃 | 芳香烃 | 含氧物质 | |
---|---|---|---|---|
乙烷 | 2,3-二甲基丁烷 | 乙烯 | 苯 | 丙烯醛 |
丙烷 | 2-甲基戊烷 | 丙烯 | 甲苯 | 丙酮 |
异丁烷 | 3-甲基戊烷 | 反-2-丁烯 | 乙苯 | MTBE |
正丁烷 | 2,4-二甲基戊烷 | 1-丁烯 | 间/对-二甲苯 | 乙酸乙酯 |
异戊烷 | 甲基环戊烷 | 顺-2-丁烯 | 邻-二甲苯 | 乙酸乙烯酯 |
正戊烷 | 2-甲基己烷 | 1,3-丁二烯 | 苯乙烯 | 异丙醇 |
正己烷 | 2,3-二甲基戊烷 | 1-戊烯 | 异丙苯 | THF |
正庚烷 | 3-甲基己烷 | 反-2-戊烯 | 正丙苯 | 己酮 |
正辛烷 | 2,2,4-三甲基戊烷 | 异戊二烯 | 1,3,5-三甲基苯 | |
正壬烷 | 甲基环己烷 | 顺-2-戊烯 | 1,2,4-三甲基苯 | |
正葵烷 | 2,3,4-三甲基戊烷 | 1-己烯 | 1,2,3-三甲基苯 | |
十一烷 | 2-甲基庚烷 | 1,4-二乙基苯 | ||
环戊烷 | 3-甲基庚烷 | 2-乙基甲苯 | ||
环己烷 | 十二烷 | 3-乙基甲苯 | ||
2,2-二甲基丁烷 | 4-乙基甲苯 |
烷烃 | 烯烃 | 芳香烃 | 含氧物质 | |
---|---|---|---|---|
乙烷 | 2,3-二甲基丁烷 | 乙烯 | 苯 | 丙烯醛 |
丙烷 | 2-甲基戊烷 | 丙烯 | 甲苯 | 丙酮 |
异丁烷 | 3-甲基戊烷 | 反-2-丁烯 | 乙苯 | MTBE |
正丁烷 | 2,4-二甲基戊烷 | 1-丁烯 | 间/对-二甲苯 | 乙酸乙酯 |
异戊烷 | 甲基环戊烷 | 顺-2-丁烯 | 邻-二甲苯 | 乙酸乙烯酯 |
正戊烷 | 2-甲基己烷 | 1,3-丁二烯 | 苯乙烯 | 异丙醇 |
正己烷 | 2,3-二甲基戊烷 | 1-戊烯 | 异丙苯 | THF |
正庚烷 | 3-甲基己烷 | 反-2-戊烯 | 正丙苯 | 己酮 |
正辛烷 | 2,2,4-三甲基戊烷 | 异戊二烯 | 1,3,5-三甲基苯 | |
正壬烷 | 甲基环己烷 | 顺-2-戊烯 | 1,2,4-三甲基苯 | |
正葵烷 | 2,3,4-三甲基戊烷 | 1-己烯 | 1,2,3-三甲基苯 | |
十一烷 | 2-甲基庚烷 | 1,4-二乙基苯 | ||
环戊烷 | 3-甲基庚烷 | 2-乙基甲苯 | ||
环己烷 | 十二烷 | 3-乙基甲苯 | ||
2,2-二甲基丁烷 | 4-乙基甲苯 |
采样点 | 浓度/mg·m-3 | 相对质量分数/% | |||
---|---|---|---|---|---|
CH4 | VOCs | CH4 | VOCs | ||
催化蜡油罐 | 85.6 | 890.4 | 8.8 | 91.2 | |
催化油浆罐 | 19.3 | 499.7 | 3.7 | 96.3 | |
炼油厂污油罐 | 1020 | 2190 | 31.8 | 68.2 | |
焦化原料罐 | 10800 | 33100 | 24.6 | 75.4 | |
焦化污油罐 | 507 | 64793 | 0.8 | 99.2 | |
裂解重油罐 | 49.9 | 11050.1 | 0.4 | 99.6 | |
裂解调和罐 | 3.9 | 1486.1 | 0.3 | 99.7 | |
炼油污水污油罐 | 20900 | 48000 | 30.3 | 69.7 |
采样点 | 浓度/mg·m-3 | 相对质量分数/% | |||
---|---|---|---|---|---|
CH4 | VOCs | CH4 | VOCs | ||
催化蜡油罐 | 85.6 | 890.4 | 8.8 | 91.2 | |
催化油浆罐 | 19.3 | 499.7 | 3.7 | 96.3 | |
炼油厂污油罐 | 1020 | 2190 | 31.8 | 68.2 | |
焦化原料罐 | 10800 | 33100 | 24.6 | 75.4 | |
焦化污油罐 | 507 | 64793 | 0.8 | 99.2 | |
裂解重油罐 | 49.9 | 11050.1 | 0.4 | 99.6 | |
裂解调和罐 | 3.9 | 1486.1 | 0.3 | 99.7 | |
炼油污水污油罐 | 20900 | 48000 | 30.3 | 69.7 |
催化蜡油罐 | 催化油浆罐 | 焦化原料罐 | 焦化污油罐 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | |||
正己烷 | 12.1 | 正己烷 | 8.6 | 3-甲基戊烷 | 28.6 | 丙酮 | 15.2 | |||
甲基环己烷 | 9.1 | 丙烯 | 8.6 | 丙烷 | 13.9 | 甲基环己烷 | 7.9 | |||
正戊烷 | 6.9 | 异戊烷 | 8.5 | 丙烯 | 7.6 | 正庚烷 | 7.7 | |||
正庚烷 | 5.9 | 正戊烷 | 7.8 | 异戊烷 | 6.5 | 环己烷 | 6.4 | |||
异戊烷 | 5.8 | 甲基环己烷 | 6.6 | 丙酮 | 6.3 | 正戊烷 | 6 | |||
乙烯裂解罐 | 乙烯调和罐 | 炼油污油罐 | 炼油污水污油罐 | |||||||
物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | |||
正戊烷 | 12.1 | 丙酮 | 14.2 | 丁烷 | 25.9 | 正己烷 | 11.2 | |||
苯 | 11.3 | 丙烯 | 13.5 | 丙烷 | 22.3 | 正戊烷 | 9.0 | |||
丙酮 | 11.2 | 正己烷 | 12.0 | 正戊烷 | 11.4 | 乙酸乙烯酯 | 6.9 | |||
1-丁烯 | 10.3 | 1-丁烯 | 11.7 | 1-丁烯 | 11.1 | 甲基环己烷 | 6.6 | |||
甲苯 | 7.4 | 丁二烯 | 5.6 | 正己烷 | 3.5 | 异戊烷 | 5.7 |
催化蜡油罐 | 催化油浆罐 | 焦化原料罐 | 焦化污油罐 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | |||
正己烷 | 12.1 | 正己烷 | 8.6 | 3-甲基戊烷 | 28.6 | 丙酮 | 15.2 | |||
甲基环己烷 | 9.1 | 丙烯 | 8.6 | 丙烷 | 13.9 | 甲基环己烷 | 7.9 | |||
正戊烷 | 6.9 | 异戊烷 | 8.5 | 丙烯 | 7.6 | 正庚烷 | 7.7 | |||
正庚烷 | 5.9 | 正戊烷 | 7.8 | 异戊烷 | 6.5 | 环己烷 | 6.4 | |||
异戊烷 | 5.8 | 甲基环己烷 | 6.6 | 丙酮 | 6.3 | 正戊烷 | 6 | |||
乙烯裂解罐 | 乙烯调和罐 | 炼油污油罐 | 炼油污水污油罐 | |||||||
物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | |||
正戊烷 | 12.1 | 丙酮 | 14.2 | 丁烷 | 25.9 | 正己烷 | 11.2 | |||
苯 | 11.3 | 丙烯 | 13.5 | 丙烷 | 22.3 | 正戊烷 | 9.0 | |||
丙酮 | 11.2 | 正己烷 | 12.0 | 正戊烷 | 11.4 | 乙酸乙烯酯 | 6.9 | |||
1-丁烯 | 10.3 | 1-丁烯 | 11.7 | 1-丁烯 | 11.1 | 甲基环己烷 | 6.6 | |||
甲苯 | 7.4 | 丁二烯 | 5.6 | 正己烷 | 3.5 | 异戊烷 | 5.7 |
1 | 中华人民共和国生态环境部. 2019中国生态环境状况公报[R]. 北京: 生态环境部, 2020.Ministry of Ecology and Environment of the People’s Republic of China. 2019 Bulletin on the state of ecology and environment in China[R]. Beijing: MEE, 2020. |
2 | ATKINSON R. Atmospheric chemistry of VOCs and NO x [J]. Atmospheric Environment, 2000, 34(12/13/14): 2063-2101. |
3 | ZIEMANN P J, ATKINSON R. Kinetics, products, and mechanisms of secondary organic aerosol formation[J]. Chemical Society Reviews, 2012, 41(19): 6582-6605. |
4 | 余益军, 孟晓艳, 王振, 等. 京津冀地区城市臭氧污染趋势及原因探讨[J]. 环境科学, 2020, 41(1): 106-114. |
YU Yijun, MENG Xiaoyan, WANG Zhen, et al Driving factors of the significant increase in surface ozone in the Beijing-Tianjin-Hebei region, China, during 2013—2018[J]. Environmental Science, 2020, 41(1): 106-114. | |
5 | 王杨君, 李莉, 冯加良, 等. 基于OSAT方法对上海2010年夏季臭氧源解析的数值模拟研究[J]. 环境科学学报, 2014, 34(3): 567-573. |
WANG Yangjun, LI Li, FENG Jialiang, et al. Source apportionment of ozone in the summer of 2010 in Shanghai using OSAT method[J]. Acta Sciencae Circumstantiae, 2014, 34(3): 567-573. | |
6 | WANG Tao, XUE Likun, BRIMBLECOMBE P, et al. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 2017, 575: 1582-1596. |
7 | WANG Mengya, YIM S H L, WONG D C, et al. Source contributions of surface ozone in China using an adjoint sensitivity analysis[J]. Science of the Total Environment,2019, 662: 385-392. |
8 | LI Lingyu, XIE Shaodong, ZENG Limin, et al. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China[J]. Atmospheric Environment, 2015, 113: 247-254. |
9 | 潘本锋, 程麟钧, 王建国, 等. 京津冀地区臭氧污染特征与来源分析[J]. 中国环境监测, 2016, 32(5): 17-23. |
PAN Benfeng, CHEN Linjun, WANG Jianguo, et al. Characteristics and source attribution of ozone pollution in Beijing-Tianjin-Hebei region[J]. Environmental Monitoring in China, 2016, 32(5): 17-23. | |
10 | CHEN Shenpo, WANG Chiheng, LIN Wendian, et al. Air quality impacted by local pollution sources and beyond-using a prominent petro-industrial complex as a study case[J]. Environmental Pollution, 2018, 236: 699-705. |
11 | CETIN E, ODABASI M, SEYFIOGLU R. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery[J]. Science of the Total Environment, 2003, 312(1/2/3): 103-112. |
12 | 吴亚君, 胡君, 张鹤丰, 等. 兰州市典型企业VOCs排放特征及反应活性分析[J]. 环境科学研究, 2019, 32(5): 802-812. |
WU Yajun, HU Jun, ZHANG Hefeng, et al. Characteristics and chemical reactivity of fugitive volatile organic compounds from typical industries in Lanzhou city[J]. Research of Environmental Sciences, 2019, 32(5): 802-812. | |
13 | 刘锦, 王秀艳, 杨文, 等. 天津临港石化企业VOCs排放特征及环境影响[J]. 环境科学研究, 2018, 31(2): 215-220. |
LIU Jin, WANG Xiuyan, YANG Wen, et al. Emission characteristics and environmental impact of VOCs in Tianjin Lingang petrochemical enterprises[J]. Research of Environmental Sciences, 2018, 31(2): 215-220. | |
14 | 李凌波, 李龙, 程梦婷, 等. 石化企业挥化性有机物无组织排放监测技术进展[J]. 化工进展, 2020, 39(3): 1196-1208. |
LI Lingbo, LI Long, CHENG Mengting, et al. Current status and future developments in monitoring of fugitive VOC emissions from petroleum refining and petrochemical Industry[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1196-1208. | |
15 | WEI Wei, CHENG Shuiyuan, LI Guohao, et al. Characteristics of ozone and ozone precursors (VOCs and NO x ) around a petroleum refinery in Beijing, China[J]. Journal of Environmental Sciences, 2014, 26(2): 332-342. |
16 | SONG Yu, DAI Wei, SHAO Min, et al. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China[J]. Environment Pollution, 2008, 156(1): 174-183. |
17 | HUANG C, CHEN C H, LI L, et al. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China[J]. Atmospheric Chemistry and Physics, 2011, 11(9): 4105-4120. |
18 | WU Rongrong, BO Yu, LI Jing, et al. Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008—2012[J]. Atmospheric Environment, 2016, 127:244-254. |
19 | 李凌波, 刘忠生, 方向晨. 炼油厂VOC排放控制策略——储运、废水处理、工艺尾气、冷却塔及火炬[J]. 当代石油石化, 2013, 21(10): 4-12. |
LI Lingbo, LIU Zhongsheng, FANG Xiangchen.The strategies for refinery VOC emission control—Storage tanks and transfer operations, wastewater treatment, process vents, cooling towers and flares[J]. Petroleum & Petrochemical Today, 2013, 21(10): 4-12. | |
20 | WEI Wei, CHENG Shuiyuan, LI Guohao, et al. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China[J]. Atmospheric Environment, 2014, 89: 358-366. |
21 | MO Ziwei, SHAO Min, LU Sihua, et al. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China[J]. Science of the Total Environment, 2015, 533: 422-431 |
22 | CHEN C L, SHU Chimin, FANG H Y. Location and characterization of VOC emissions at a petrochemical plant in Taiwan[J]. Environmental Forensics, 2006, 7(2): 159-167. |
23 | 吴丽萍, 欧盛菊, 殷宝辉, 等. 新疆维吾尔自治区石化企业典型工艺无组织VOCs排放特征及光化学反应活性[J]. 环境科学研究, 2018, 31(12): 2103-2111. |
WU Liping, Shengju OU, YIN Baohui, et al. Emission characteristics and photochemical reaction activity of VOCs in the non-organized emission of typical processes of the petrochemical enterprise in Xinjiang Uygur Autonmous Region[J]. Research of Environmental Sciences, 2018, 31(12): 2103-2111. | |
24 | 李勤勤, 张志娟, 李杨, 等. 石油炼化无组织VOCs的排放特征及臭氧生成潜力分析[J]. 中国环境科学, 2016, 36(5): 1323-1331. |
LI Qinqin, ZHANG Zhijuan, LI Yang, et al. Characteristics and ozone formation potential of fugitive volatile organic compounds (VOCs) emitted from petrochemical industry in Pearl River Delta[J]. China Environmental Science, 2016, 36(5): 1323-1331. | |
25 | LIU Ying, SHAO Min, FU Linlin, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part I.[J]. Atmospheric Environment, 2008, 42(25): 6247-6260. |
26 | ZHANG Zhijuan, WANG Hao, CHEN Dan, et al. Emission characteristics of volatile organic compounds and their secondary organic aerosol formation potentials from a petroleum refinery in Pearl River Delta, China[J]. Science of the Total Environment, 2017, 584/585: 1162-1174. |
27 | 吕小利, 刘佳佳, 陈劲. 炼化企业VOCs排放现状及治理对策[J]. 安全、健康和环境, 2017, 17(1): 29-32. |
Xiaoli LYU, LIU Jiajia, CHEN Jin. Emission status and countermeasures of VOCs in refining & chemical industries[J]. Safety Health & Environment, 2017, 17(1): 29-32. | |
28 | 郭兵兵, 朴勇, 华秀凤, 等. 高温蜡油罐区废气综合治理技术[J]. 当代化工, 2014, 43(9): 1879-1882. |
GUO Bingbing, PIAO Yong, HUA Xiufeng, et al. Comprehensive treatment technology for odour pollution of waste gas in high temperature gas oil tank farm[J]. Contemporary Chemical Industry, 2014, 43(9): 1879-1882. | |
29 | 李凌波, 郭兵兵, 刘忠生. 炼油厂恶臭污染源综合监测与评价Ⅱ. 污染源分级与排放评估[J]. 石油炼制与化工, 2013, 44(2): 77-83. |
LI Lingbo, GUO Bingbing, LIU Zhongsheng. Comprehensive monitoring and assessment of odour emission sources from refinery Ⅱ. Classification of odorous sources and emission assessment[J]. Petroleum Processing and Petrochemicals, 2013, 44(2): 77-83. | |
30 | 方向晨, 刘忠生, 郭兵兵, 等. 炼厂酸性水罐区气体减排和治理新技术[J]. 炼油技术与工程, 2012, 42(3): 58-62. |
FANG Xiangchen, LIU Zhongsheng, GUO Bingbing, et al. New technologies for integrated treatment of vent gas from sour water tank farm in refinery[J]. Petroleum Refinery Engineering, 2012, 42(3): 58-62. | |
31 | 中华人民共和国生态环境部. 中华人民共和国环保行业标准: 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法: [S]. 北京: 中国环境科学出版社, 2017. |
Ministry of Ecology and Environment of the People’s Republic of China. Environmental protection standard of the People’s Republic of China: Ambient air-determination of total hydrocarbons, methane and non-methane hydrocarbons-direct injection/gas chromatography: [S]. Beijing: China Environmental Science Press, 2017 | |
32 | US EPA. 1999. Compendium method TO-15 determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by GC/MS[R/OL]. . |
33 | ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12): 4605-4638. |
34 | CARTER W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air & Waste, 1994, 44(7): 881-899. |
35 | FENG Yunxia, XIAO Anshan, JIA Runzhong, et al. Emission characteristics and associated assessment of volatile organic compounds from process units in a refinery[J]. Environmental Pollution, 2020, 265: 115026. |
[1] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[2] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[3] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[4] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[5] | YANG Fu, LIU Mengting, MA Shulan, WEI Yixuan, OU Rui, WANG Xuyu, LI Lulu, ZHANG Wuxiang, PAN Jianming. Advanced in catalytic elimination of volatile organic compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4801-4812. |
[6] | ZHENG Yamei, LIN Shengnan, JING Guohua, SHEN Huazhen, LYU Bihong. Evaluation of VOCs terminal treatment technology in pesticide production based on fuzzy analytic hierarchy process [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3372-3380. |
[7] | LIU Xingyuan, ZHANG Yongfeng, XIAO Kai, GAO Jingze. Research progress of molecular sieve materials in the adsorption of VOCs [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2504-2510. |
[8] | DU Jiahui, LIU Jia, YANG Juping, QI Hongyi, DOU Xiaona, LI Jian. Recent advances in biological combined technology for VOCs treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2802-2812. |
[9] | WANG Xu, WU Yushuai, YANG Xin, CHEN Huiyong, ZHANG Jianbo, MA Xiaoxun. Review of adsorptive removal of volatile organic compounds by zeolite [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2813-2826. |
[10] | ZHANG Wei, TANG Yunhao, YIN Yanshan, GONG Weicheng, SONG Jian, MA Ying, RUAN Min, XU Huifang, CHEN Donglin. Research progress in enhanced catalytic oxidation of VOCs by modified La-based perovskite catalyst [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1425-1437. |
[11] | Xianzheng MENG, Ruijie ZHUANG, Qingjun YU, Xiaolong TANG, Honghong YI, Yongchao FENG, Jinghui WEI, Chaoqi CHEN. Research progress in catalytic combustion of organic waste gas in pharmaceutical industry [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 789-799. |
[12] | WEI Jinghui, FENG Yongchao, YU Qingjun, YI Honghong, TANG Xiaolong, ZHANG Yuanyuan, MENG Xianzheng, YUAN Yuting. Research progress of catalytic oxidation of typical VOCs in cooking oil fumes [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5730-5746. |
[13] | Yuxuan YANG, Chenxi ZHU, Qunxing HUANG. Progress on preparation and adsorption application of solid waste derived hierarchical porous carbon [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 427-439. |
[14] | Meng LI, Wei LI, Shuai ZHANG, Yuwei LI, Fang LIU, Chaocheng ZHAO, Yongqiang WANG. Research progress on adsorption of VOCs by MOF and its composite [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 415-426. |
[15] | Weiyue WANG, Peipei ZHAO, Lingyun JIN, Bingheng CEN, Jian CHEN, Mengfei LUO. Recent advances in catalysts for volatile organic compounds combustion [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 185-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |