Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 789-799.DOI: 10.16085/j.issn.1000-6613.2020-0722
• Industrial catalysis • Previous Articles Next Articles
Xianzheng MENG1(), Ruijie ZHUANG1, Qingjun YU1,2(), Xiaolong TANG1,2(), Honghong YI1,2, Yongchao FENG1, Jinghui WEI1, Chaoqi CHEN1
Received:
2020-04-30
Revised:
2020-06-07
Online:
2021-02-09
Published:
2021-02-05
Contact:
Qingjun YU,Xiaolong TANG
孟宪政1(), 庄瑞杰1, 于庆君1,2(), 唐晓龙1,2(), 易红宏1,2, 冯勇超1, 隗晶慧1, 陈超祺1
通讯作者:
于庆君,唐晓龙
作者简介:
孟宪政(1997—),男,硕士研究生,研究方向为大气污染控制。E-mail:基金资助:
CLC Number:
Xianzheng MENG, Ruijie ZHUANG, Qingjun YU, Xiaolong TANG, Honghong YI, Yongchao FENG, Jinghui WEI, Chaoqi CHEN. Research progress in catalytic combustion of organic waste gas in pharmaceutical industry[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 789-799.
孟宪政, 庄瑞杰, 于庆君, 唐晓龙, 易红宏, 冯勇超, 隗晶慧, 陈超祺. 制药行业有机废气催化燃烧研究进展[J]. 化工进展, 2021, 40(2): 789-799.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0722
制药类别 | 废气产生节点 | 药物种类 | 特征污染物 | 排放特征 | 文献 |
---|---|---|---|---|---|
发酵类 | ①生物发酵尾气;②提取过程有机溶剂的挥发;③污水处理站废气以及菌渣等固废废气[ | 青霉素 | 正己烷、乙酸丁酯、丁醇 | 污染物种类多、排放量大、排放不稳定、多为无组织排放[ | [ |
维生素B12 | 丙酮 | [ | |||
维生素C | 乙酸乙酯、乙酸丁酯、丙酮 | [ | |||
生霉素 | 乙酸乙酯、乙酸丁酯、丙酮 | [ | |||
化学合成类 | ①合成过程中有机溶剂挥发;②提取和精制过程中有机溶媒挥发;③干燥过程中的粉尘和有机溶剂。还包括企业污水处理站和固废废气[ | 头孢克洛 | 丙酮、二氯甲烷 | [ | |
阿莫西林 | 丙酮、二氯甲烷、三乙胺 | [ | |||
氨苄西林 | 二氯甲烷、丙酮 | [ | |||
盐酸克林霉素 | 乙醇、丙酮 | [ |
制药类别 | 废气产生节点 | 药物种类 | 特征污染物 | 排放特征 | 文献 |
---|---|---|---|---|---|
发酵类 | ①生物发酵尾气;②提取过程有机溶剂的挥发;③污水处理站废气以及菌渣等固废废气[ | 青霉素 | 正己烷、乙酸丁酯、丁醇 | 污染物种类多、排放量大、排放不稳定、多为无组织排放[ | [ |
维生素B12 | 丙酮 | [ | |||
维生素C | 乙酸乙酯、乙酸丁酯、丙酮 | [ | |||
生霉素 | 乙酸乙酯、乙酸丁酯、丙酮 | [ | |||
化学合成类 | ①合成过程中有机溶剂挥发;②提取和精制过程中有机溶媒挥发;③干燥过程中的粉尘和有机溶剂。还包括企业污水处理站和固废废气[ | 头孢克洛 | 丙酮、二氯甲烷 | [ | |
阿莫西林 | 丙酮、二氯甲烷、三乙胺 | [ | |||
氨苄西林 | 二氯甲烷、丙酮 | [ | |||
盐酸克林霉素 | 乙醇、丙酮 | [ |
催化剂组成 | 污染物 | 浓度/ppm | GHSV/WHSV | 反应温度/℃ | 催化效率/% | 参考文献 |
---|---|---|---|---|---|---|
Ru/TiO2 | 二氯甲烷 | 1000 | 30000h-1 | 335 | 100 | [ |
Pd-Au/TiO2 | 甲苯 | 1000 | 60000mL·g-1·h-1 | 210 | 90 | [ |
Pt/Al2O3 | 二氯甲烷 | 500 | 143790h-1 | 450 | 100 | [ |
Ag/CeO2 | 乙酸乙酯 | 500 | 60000mL·g-1·h-1 | 197 | 90 | [ |
Pt/CeO2-Al2O3 | 二氯甲烷 | 3000 | 15000h-1 | 312 | 50 | [ |
Pd-Mn/TiO2 | 丙酮 | 1000 | 30000mL·g-1·h-1 | 259 | 100 | [ |
Pd/ZSM-5 | 甲苯 | 1500 | 26000h-1 | 272 | 90 | [ |
Pt/MOR | 甲苯 | 1000 | 60000mL·g-1·h-1 | 190 | 90 | [ |
Pt/ZSM-5 | 甲苯 | 500 | 80000mL·g-1·h-1 | 159 | 90 | [ |
Pt/Beta | 甲苯 | 1000 | 30000mL·g-1·h-1 | 189 | 98 | [ |
催化剂组成 | 污染物 | 浓度/ppm | GHSV/WHSV | 反应温度/℃ | 催化效率/% | 参考文献 |
---|---|---|---|---|---|---|
Ru/TiO2 | 二氯甲烷 | 1000 | 30000h-1 | 335 | 100 | [ |
Pd-Au/TiO2 | 甲苯 | 1000 | 60000mL·g-1·h-1 | 210 | 90 | [ |
Pt/Al2O3 | 二氯甲烷 | 500 | 143790h-1 | 450 | 100 | [ |
Ag/CeO2 | 乙酸乙酯 | 500 | 60000mL·g-1·h-1 | 197 | 90 | [ |
Pt/CeO2-Al2O3 | 二氯甲烷 | 3000 | 15000h-1 | 312 | 50 | [ |
Pd-Mn/TiO2 | 丙酮 | 1000 | 30000mL·g-1·h-1 | 259 | 100 | [ |
Pd/ZSM-5 | 甲苯 | 1500 | 26000h-1 | 272 | 90 | [ |
Pt/MOR | 甲苯 | 1000 | 60000mL·g-1·h-1 | 190 | 90 | [ |
Pt/ZSM-5 | 甲苯 | 500 | 80000mL·g-1·h-1 | 159 | 90 | [ |
Pt/Beta | 甲苯 | 1000 | 30000mL·g-1·h-1 | 189 | 98 | [ |
催化剂组成 | 污染物 | 浓度/ppm | GHSV/WHSV | 反应温度/℃ | 催化效率/% | 参考文献 |
---|---|---|---|---|---|---|
Cu/分子筛-不锈钢纤维 | 丙酮 | 1500 | 13221h-1 | 300 | 90 | [ |
CuO/ZSM-5 | 乙酸乙酯 | 1500 | 15000h-1 | 235 | 90 | [ |
MnOx/TiO2纳米线 | 丙酮 | 500 | 360000mL·g-1·h-1 | 290 | 90 | [ |
催化剂组成 | 污染物 | 浓度/ppm | GHSV/WHSV | 反应温度/℃ | 催化效率/% | 参考文献 |
---|---|---|---|---|---|---|
Cu/分子筛-不锈钢纤维 | 丙酮 | 1500 | 13221h-1 | 300 | 90 | [ |
CuO/ZSM-5 | 乙酸乙酯 | 1500 | 15000h-1 | 235 | 90 | [ |
MnOx/TiO2纳米线 | 丙酮 | 500 | 360000mL·g-1·h-1 | 290 | 90 | [ |
催化剂组成 | 污染物 | 浓度/ppm | GHSV/WHSV | 反应温度/℃ | 催化效率/% | 参考文献 |
---|---|---|---|---|---|---|
CeO2-Co3O4 | 乙酸乙酯 | 1000 | 60000h-1 | 260 | 100 | [ |
Cs/锰钾矿 | 乙酸乙酯 | 1600 | 16000h-1 | 200 | 100 | [ |
Fe-Mn | 甲苯 | 10000 | 20000mL·g-1·h-1 | 282 | 80 | [ |
CoCr2O4 | 二氯甲烷 | 3000 | 15000h-1 | 210 | 50 | [ |
钴铝水滑石 | 丙酮 | 1000 | 33000mL·g-1·h-1 | 250 | 100 | [ |
Co3O4/泡沫镍 | 丙酮 | 580 | 17000mL·g-1·h-1 | 177 | 90 | [ |
CuCexZr1-xOy/ZSM-5 | 乙酸乙酯 | — | 24000h-1 | 270 | 100 | [ |
锰铝水滑石 | 丙酮 | 258 | 18000mL·g-1·h-1 | 170 | 100 | [ |
CuCo2O4空心球 | 丙酮 | 1000 | 93000mL·g-1·h-1 | 200 | 100 | [ |
催化剂组成 | 污染物 | 浓度/ppm | GHSV/WHSV | 反应温度/℃ | 催化效率/% | 参考文献 |
---|---|---|---|---|---|---|
CeO2-Co3O4 | 乙酸乙酯 | 1000 | 60000h-1 | 260 | 100 | [ |
Cs/锰钾矿 | 乙酸乙酯 | 1600 | 16000h-1 | 200 | 100 | [ |
Fe-Mn | 甲苯 | 10000 | 20000mL·g-1·h-1 | 282 | 80 | [ |
CoCr2O4 | 二氯甲烷 | 3000 | 15000h-1 | 210 | 50 | [ |
钴铝水滑石 | 丙酮 | 1000 | 33000mL·g-1·h-1 | 250 | 100 | [ |
Co3O4/泡沫镍 | 丙酮 | 580 | 17000mL·g-1·h-1 | 177 | 90 | [ |
CuCexZr1-xOy/ZSM-5 | 乙酸乙酯 | — | 24000h-1 | 270 | 100 | [ |
锰铝水滑石 | 丙酮 | 258 | 18000mL·g-1·h-1 | 170 | 100 | [ |
CuCo2O4空心球 | 丙酮 | 1000 | 93000mL·g-1·h-1 | 200 | 100 | [ |
催化剂组成 | 污染物 | 浓度/ppm | GHSV/WHSV | 反应温度/℃ | 催化效率/% | 参考文献 |
---|---|---|---|---|---|---|
核壳Al2O3@Pd-CoAlO | 甲苯 | 2000 | 60000mL·g-1·h-1 | 207 | 90 | [ |
Mn1.20Co1.80O4空心球 | 丙酮 | 1000 | 93000mL·g-1·h-1 | 140 | 100 | [ |
蛋黄壳状CoCrOx | 二氯甲烷 | 1000 | 43750mL·g-1·h-1 | 325 | 90 | [ |
MnOx-CeO2(MOF模板) | 乙酸乙酯 | 500 | 60000mL·g-1·h-1 | 210 | 99 | [ |
CeCuOx(MOF前体) | 丙酮 | 500 | 23000h-1 | 186 | 90 | [ |
催化剂组成 | 污染物 | 浓度/ppm | GHSV/WHSV | 反应温度/℃ | 催化效率/% | 参考文献 |
---|---|---|---|---|---|---|
核壳Al2O3@Pd-CoAlO | 甲苯 | 2000 | 60000mL·g-1·h-1 | 207 | 90 | [ |
Mn1.20Co1.80O4空心球 | 丙酮 | 1000 | 93000mL·g-1·h-1 | 140 | 100 | [ |
蛋黄壳状CoCrOx | 二氯甲烷 | 1000 | 43750mL·g-1·h-1 | 325 | 90 | [ |
MnOx-CeO2(MOF模板) | 乙酸乙酯 | 500 | 60000mL·g-1·h-1 | 210 | 99 | [ |
CeCuOx(MOF前体) | 丙酮 | 500 | 23000h-1 | 186 | 90 | [ |
1 | 蒋旻曦, 肖立峰, 蔡宇翔. 医药行业VOCs治理概述[J]. 环境影响评价, 2015, 37(5): 92-96. |
JIANG M X, XIAO L F, CAI Y X. The current treatments of VOCs in pharmaceutical industries[J]. Environmental Impact Assessment, 2015, 37(5): 92-96. | |
2 | 王东升, 朱新梦, 杨晓芳, 等. 生物发酵制药行业VOCs和异味污染特征与防控技术的现状与展望[J]. 环境科学, 2019(4): 1-12. |
WANG D S, ZHU X M, YANG X F, et al. Advances and perspectives in pollution characteristics and prevention and control technology of VOCs and odor emitted from pharmaceutical fermentation industry[J]. Environmental Science, 2019(4): 1-12. | |
3 | 徐志荣, 王浙明, 许明珠, 等. 浙江省制药行业典型挥发性有机物臭氧产生潜力分析及健康风险评价[J]. 环境科学, 2013, 34(5): 1864-1870. |
XU Z R, WANG Z M, XU M Z, et al. Health risk assessment and ozone formation potentials of volatile organic compounds from pharmaceutical industry in Zhejiang Province[J]. Environmental Science, 2013, 34(5): 1864-1870. | |
4 | 王洪华, 邢书彬, 周保华, 等. 河北省制药行业污染防治现状及对策[J]. 河北工业科技, 2010, 27(5): 355-360. |
WANG H H, XING S B, ZHOU B H, et al. Current situation of pharmaceutical industry pollution control and its countermeasures in Hebei[J]. Hebei Industrial Technology, 2010, 27(5): 355-360. | |
5 | 赵晓辉, 郭伯钊, 赵校峰. 化学合成制药行业有机废气来源分析与防治技术研究[J]. 河南科技, 2014(14): 46-47. |
ZHAO X H, GUO B Z, ZHAO X F. Study on source analysis and prevention technology of organic waste gas in chemical synthesis pharmaceutical industry[J]. Henan Science and Technology, 2014(14): 46-47. | |
6 | 邢书彬, 修光利, 陈艳卿. 混装制剂类制药行业污染特征与控制标准研究[J]. 环境科学与管理, 2009, 34(10): 8-13. |
XING S B, XIU G L, CHEN Y Q. The pollution characterization and control standard of pollutants from pharmaceutical manufacturer[J]. Environmental Science and Management, 2009, 34(10): 8-13. | |
7 | 王东升, 朱新梦, 杨晓芳, 等. 生物发酵制药VOCs与嗅味治理技术研究与发展[J]. 环境科学, 2019, 40(4): 1990-1998. |
WANG D S, ZHU X M, YANG X F, et al. Status and prospect of VOCs and odor pollution characteristics and prevention and control technology in biological fermentation pharmaceutical industry[J]. Environmental Science, 2019, 40(4): 1990-1998. | |
8 | 张涛. 石家庄制药行业VOCs及恶臭排放特征及其数据库的建立研究[D]. 石家庄: 河北科技大学, 2014. |
ZHANG T. Study on the emission characteristics of VOCs and odor pollutants from the pharmaceutical industry and the establishment of the database in Shijiazhuang[D]. Shijiazhuang: Hebei University of Science and Technology, 2014. | |
9 | 李嫣. 化学合成类制药工业大气污染物排放标准研究[D]. 杭州: 浙江工业大学, 2015. |
LI Y. Study on emission standard of air pollutants for pharmaceutical industry chemical synthesis products category[D]. Hangzhou: Zhejiang University of Technology, 2015. | |
10 | HU J, ZHANG L L, CHEN J M, et al. Performance and microbial analysis of a biotrickling filter inoculated by a specific bacteria consortium for removal of a simulated mixture of pharmaceutical volatile organic compounds[J]. Chemical Engineering Journal, 2016, 304: 757-765. |
11 | 魏亚楠. 制药行业挥发性有机物(VOCs)监测方法体系研究[D]. 石家庄: 河北科技大学, 2017. |
WEI Y N. Studies on the monitoring method system of volatile organic compounds (VOCs) from pharmaceutical industry[D]. Shijiazhuang: Hebei University of Science and Technology, 2017. | |
12 | 张燕燕, 许高晋, 邵冬贤. 制药工业过程中有机废气的治理技术[J]. 安徽化工, 2019, 45(3): 16-17. |
ZHANG Y Y, XYU G J, SHAO D X. Treatment technology of organic waste gas in pharmaceutical industry[J]. Anhui Chemical Industry, 2019, 45(3): 16-17. | |
13 | DU Z, YUAN X L, REN A L, et al. Typical pharmaceutical process VOCs and stench pollution characteristics and control techniques[C]//Advanced Materials Research. Switzerland: Trans Tech Publications, 2013: 2017-2021. |
14 | 田杰, 刘宝友. VOCs治理技术分析及研究进展[J]. 现代化工, 2020, 40(4): 30-35. |
TIAN J, LIU B Y. Analysis and advances on governance technologies of VOCs[J]. Modern Chemical Industry, 2020, 40(4): 30-35. | |
15 | 杨勇. 医药化工企业废气处理技术探究[J]. 化工设计通讯, 2017, 43(2): 180-181. |
YANG Y. Study on waste gas treatment technology in pharmaceutical and chemical enterprises[J]. Chemical Engineering Design Communications, 2017, 43(2): 180-181. | |
16 | 田之光. 制药废气治理工艺改进设计分析[J]. 中国环保产业, 2018(5): 37-40. |
TIAN Z G. Analysis on the improvement design of pharmaceutical waste gas treatment process[J]. China Environmental Protection Industry, 2018(5): 37-40. | |
17 | 路洪涛, 赵红梅, 李燕. 化学合成类制药项目有机废气治理工艺分析与研究[J]. 山东化工, 2016, 45(20): 73-74. |
LU H T, ZHAO H M, LI Y. Analysis and research on organic waste gas treatment process in chemical synthesis pharmaceutical projects[J]. Shandong Chemical Industry, 2016, 45(20): 73-74. | |
18 | 渭军. 制药企业废气处理[J]. 低碳世界, 2017(17): 13-14. |
WEI J. Pharmaceutical enterprises waste gas treatment[J]. Low Carbon World, 2017(17): 13-14. | |
19 | 臧飞, 牛洁平, 张军立. 制药行业低浓度无组织有机废气排放的达标治理实践研究[J]. 煤炭与化工, 2019, 42(6): 155-157,160. |
ZANG F, NIU J P, ZHANG J L. Practical research on standard-meeting treatment of low concentration organic waste gas discharge in pharmaceutical industry[J]. Coal and Chemical Industry, 2019, 42(6): 155-157,160. | |
20 | 卢怡昕. 制药行业VOCs防治技术评估体系的建立及应用[D]. 石家庄: 河北科技大学, 2016. |
LU Y X. Establishment and application on assessment system of VOCs’s control technology of pharmaceutical industry[D]. Shijiazhuang: Hebei University of Science and Technology, 2016. | |
21 | WANG Q H, ZHANG L, TIAN S, et al. A pilot-study on treatment of a waste gas containing butyl acetate, n-butyl alcohol and phenylacetic acid from pharmaceutical factory by bio-trickling filter[J]. Biochemical Engineering Journal, 2007, 37(1): 42-48. |
22 | BALASUBRAMANIAN P, PHILIP L, BHALLAMUDI M. Biotrickling filtration of VOC emissions from pharmaceutical industries[J]. Chemical Engineering Journal, 2012, 209: 102-112. |
23 | ZHAO Q, LIU Q L, SONG C F, et al. Enhanced catalytic performance for VOCs oxidation on the CoAlO oxides by KMnO4 doped on facile synthesis[J]. Chemosphere, 2019, 218: 895-906. |
24 | 郝园. 医药化工行业VOCs及恶臭污染特性的研究[D]. 石家庄: 河北科技大学, 2014. |
HAO Y. Study on the pharmaceutical and chemical industry VOCs and odor pollution characteristics[D]. Shijiazhuang: Hebei University of Science and Technology, 2014. | |
25 | 律国黎. 制药行业挥发性有机物(VOCs)污染特性研究[D]. 石家庄: 河北科技大学, 2013. |
LYU G L. Studies on the pollution characteristics of volatile organic compounds (VOCs) from pharmaceutical industry[D]. Shijiazhuang: Hebei University of Science and Technology, 2013. | |
26 | GE Y L, FU K X, ZHAO Q, et al. Performance study of modified Pt catalysts for the complete oxidation of acetone[J]. Chemical Engineering Science, 2019, 206: 499-506. |
27 | CAO S, FEI X Q, WEN Y X, et al. Bimodal mesoporous TiO2 supported Pt, Pd and Ru catalysts and their catalytic performance and deactivation mechanism for catalytic combustion of dichloromethane (CH2Cl2)[J]. Applied Catalysis A: General, 2018, 550: 20-27. |
28 | LEE D S, CHEN Y W. The mutual promotional effect of Au-Pd/CeO2 bimetallic catalysts on destruction of toluene[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44: 40-44. |
29 | ASSAL Z E, OJALA S, PITKAAHO S, et al. Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts[J]. Chemical Engineering Journal, 2017, 313: 1010-1022. |
30 | 张晓岚, 袁静, 蔡婷, 等. Au/CeO2基材料在挥发性有机物催化燃烧反应中的研究进展[J]. 化工进展, 2017, 36(12): 4453-4461. |
ZHANG X L, YUAN J, CAI T, et al. Research progress of Au/CeO2-based materials for catalytic combustion of VOCs[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4453-4461. | |
31 | QIN Y, LIU X L, ZHU T L, et al. Catalytic oxidation of ethyl acetate over silver catalysts supported on CeO2 with different morphologies[J]. Materials Chemistry and Physics, 2019, 229: 32-38. |
32 | CHEN Q Y, LI N, LUO M F, et al. Catalytic oxidation of dichloromethane over Pt/CeO2-Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2012, 127: 159-166. |
33 | 葛云丽. 丙酮低温催化氧化的新型Ce/Mn掺杂贵金属催化剂制备与评价[D]. 天津: 天津大学, 2018. |
GE Y L. Novel noble metal catalyst via Ce/Mn doping for low temperature acetone catalytic oxidation[D]. Tianjin: Tianjin University, 2018. | |
34 | 彭悦欣. 负载型分子筛催化材料消除甲苯的性能研究[D]. 杭州: 浙江大学, 2018. |
PENG Y X. The performance of zeolite-supported catalytic materials for toluene abatement [D]. Hangzhou: Zhejiang University, 2018. | |
35 | HE C, LI J J, CHENG J, et al. Comparative studies on porous material-supported Pd catalysts for catalytic oxidation of benzene, toluene, and ethyl acetate[J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 6930-6936. |
36 | JABLOŃSKA M, KROL A, KUKULSKA E, et al. Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration[J]. Applied Catalysis B: Environmental, 2015, 166/167: 353-365. |
37 | ZHANG J Y, RAO C, PENG H G, et al. Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite[J]. Chemical Engineering Journal, 2018, 334: 10-18. |
38 | YANG D Y, FU S Y, HUANG S S, et al. The preparation of hierarchical Pt/ZSM-5 catalysts and their performance for toluene catalytic combustion[J]. Microporous and Mesoporous Materials, 2020, 296: 109802. |
39 | CHEN C Y, ZHU J, CHEN F, et al. Enhanced performance in catalytic combustion of toluene over mesoporous beta zeolite-supported platinum catalyst[J]. Applied Catalysis B: Environmental, 2013, 140/141: 199-205. |
40 | ZHOU C Y, ZHANG H P, YAN Y, et al. Catalytic combustion of acetone over Cu/LTA zeolite membrane coated on stainless steel fibers by chemical vapor deposition[J]. Microporous and Mesoporous Materials, 2017, 248: 139-148. |
41 | ZHOU Y, ZHANG H P, YAN Y. Catalytic oxidation of ethyl acetate over CuO/ZSM-5 catalysts: effect of preparation method[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84: 162-172. |
42 | ZHU X C, ZHANG S, YU X N, et al. Controllable synthesis of hierarchical MnOx/TiO2 composite nanofibers for complete oxidation of low-concentration acetone[J]. Journal of Hazardous Materials, 2017, 337: 105-114. |
43 | KONSOLAKIS M, CARABINEIRO S, MARNELLOS G, et al. Effect of cobalt loading on the solid state properties and ethyl acetate oxidation performance of cobalt-cerium mixed oxides[J]. Journal of Colloid and Interface Science, 2017, 496: 141-149. |
44 | CHEN X, CARABINEIRO S, BASTOS S, et al. Catalytic oxidation of ethyl acetate on cerium-containing mixed oxides[J]. Applied Catalysis A: General, 2014, 472: 101-112. |
45 | DURÁN F G, BARBERO B P, CADUS L E, et al. Manganese and iron oxides as combustion catalysts of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2009, 92(1/2): 194-201. |
46 | LIU J D, ZHANG T T, JIA A P, et al. The effect of microstructural properties of CoCr2O4 spinel oxides on catalytic combustion of dichloromethane[J]. Applied Surface Science, 2016, 369: 58-66. |
47 | ZHAO Q, GE Y L, FU K X, et al. Oxidation of acetone over Co-based catalysts derived from hierarchical layer hydrotalcite: influence of Co/Al molar ratios and calcination temperatures[J]. Chemosphere, 2018, 204: 257-266. |
48 | ZHAO Q, ZHENG Y F, SONG C F, et al. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation[J]. Applied Catalysis B: Environmental, 2020, 265: 118552. |
49 | LI S M, HAO Q L, ZHAO R Z, et al. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts[J]. Chemical Engineering Journal, 2016, 285: 536-543. |
50 | SUN Y G, LI N, XING X, et al. Catalytic oxidation performances of typical oxygenated volatile organic compounds (acetone and acetaldehyde) over MAlO (M = Mn, Co, Ni, Fe) hydrotalcite-derived oxides[J]. Catalysis Today, 2019, 327: 389-397. |
51 | ZHANG C, WANG J G, YANG S F, et al. Boosting total oxidation of acetone over spinel MCo2O4 (M = Co, Ni, Cu) hollow mesoporous spheres by cation-substituting effect[J]. Journal of Colloid and Interface Science, 2019, 539: 65-75. |
52 | ZHAO S, HU F Y, LI J H. Hierarchical core-shell Al2O3@Pd-CoAlO microspheres for low-temperature toluene combustion[J]. ACS Catalysis, 2016, 6(6): 3433-3441. |
53 | WANG J G, ZHANG C, YANG S F, et al. Highly improved acetone oxidation activity over mesoporous hollow nanospherical MnxCo3-xO4 solid solutions[J]. Catalysis Science & Technology, 2019, 9(22): 6379-6390. |
54 | FENG X B, TIAN M J, HE C, et al. Yolk-shell-like mesoporous CoCrOx with superior activity and chlorine resistance in dichloromethane destruction[J]. Applied Catalysis B: Environmental, 2020, 264: 118493. |
55 | DAI Q G, WANG W, WANG X Y, et al. Sandwich-structured CeO2@ZSM-5 hybrid composites for catalytic oxidation of 1,2-dichloroethane: an integrated solution to coking and chlorine poisoning deactivation[J]. Applied Catalysis B: Environmental, 2017, 203: 31-42. |
56 | JIANG Y W, GAO J H, ZHANG Q, et al. Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template[J]. Chemical Engineering Journal, 2019, 371: 78-87. |
57 | WANG Q Y, LI Z M, BANARES M A, et al. A novel approach to high-performance aliovalent-substituted catalysts-2D bimetallic MOF-derived CeCuOx microsheets[J]. Small, 2019, 15(42): 1903525. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[14] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[15] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |