Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 545-554.DOI: 10.16085/j.issn.1000-6613.2024-0586
• Resources and environmental engineering • Previous Articles Next Articles
LIU Qingchen1(), WANG Huawei1(), LIU Rongwen1, ZOU Rongxue1, ZHAN Meili2, WANG Yanan1, SUN Yingjie1, XIA Zhengqi3, SHAN Bin1
Received:
2024-04-09
Revised:
2024-07-15
Online:
2024-12-06
Published:
2024-11-20
Contact:
WANG Huawei
刘青晨1(), 王华伟1(), 刘荣稳1, 邹融雪1, 占美丽2, 王亚楠1, 孙英杰1, 夏正启3, 单斌1
通讯作者:
王华伟
作者简介:
刘青晨(1999—),女,硕士研究生,研究方向为渗滤液处理处置。E-mail:1758016547@qq.com。
基金资助:
CLC Number:
LIU Qingchen, WANG Huawei, LIU Rongwen, ZOU Rongxue, ZHAN Meili, WANG Yanan, SUN Yingjie, XIA Zhengqi, SHAN Bin. Efficiency of coagulation-ozone oxidation on the removal of organic micropollutants from biotreated leachate[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 545-554.
刘青晨, 王华伟, 刘荣稳, 邹融雪, 占美丽, 王亚楠, 孙英杰, 夏正启, 单斌. 混凝-臭氧氧化对渗滤液生化出水有机微污染物的去除效果[J]. 化工进展, 2024, 43(S1): 545-554.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0586
水平 | 混凝剂剂量(A)/g·L-1 | pH(B) |
---|---|---|
1 | 3.0 | 6.0 |
2 | 4.0 | 7.0 |
3 | 5.0 | 8.0 |
4 | 6.0 | 9.0 |
水平 | 混凝剂剂量(A)/g·L-1 | pH(B) |
---|---|---|
1 | 3.0 | 6.0 |
2 | 4.0 | 7.0 |
3 | 5.0 | 8.0 |
4 | 6.0 | 9.0 |
项目 | 峰A | 峰B | 峰C | 峰D | 峰E |
---|---|---|---|---|---|
生化出水原液 | 4008.12 | 8712.91 | 7603.74 | 7217.25 | 14971.22 |
PFS出水 | 3547.68 | 10479.82 | 3544.41 | 3269.41 | 14918.22 |
PFS-O3 | 50.07 | 1152.62 | 215.77 | 58.25 | 3258.46 |
PFS-GAC/O3 | 22.98 | 878.04 | 44.38 | 32.92 | 1811.36 |
PFS-UV/O3 | 8.49 | 119.20 | 43.68 | 18.58 | 460.41 |
项目 | 峰A | 峰B | 峰C | 峰D | 峰E |
---|---|---|---|---|---|
生化出水原液 | 4008.12 | 8712.91 | 7603.74 | 7217.25 | 14971.22 |
PFS出水 | 3547.68 | 10479.82 | 3544.41 | 3269.41 | 14918.22 |
PFS-O3 | 50.07 | 1152.62 | 215.77 | 58.25 | 3258.46 |
PFS-GAC/O3 | 22.98 | 878.04 | 44.38 | 32.92 | 1811.36 |
PFS-UV/O3 | 8.49 | 119.20 | 43.68 | 18.58 | 460.41 |
技术 | 渗滤液样品 | COD /mg·L-1 | COD去除率 /% | CN | CN去除率 /% | 诺氟沙星 /ng·L-1 | 诺氟沙星 去除率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
O3 | 渗滤液 | — | — | — | — | 625.8 | 100 | [ |
垃圾填埋场生物反应器 | 渗滤液 | 2176 | 56.32 | — | — | 840.25 | ~80 | [ |
nFe3O4-O3 | 渗滤液生化出水 | — | — | 0.19 | 89.80 | — | — | [ |
PFS出水 | 渗滤液生化出水 | 845 | 55.62 | 0.36 | 79.74 | 0.008 | 67.54 | 本研究 |
PFS-UV/O3 | 渗滤液生化出水 | 845 | 81.07 | 0.36 | 99.66 | 0.008 | 90.17 | 本研究 |
技术 | 渗滤液样品 | COD /mg·L-1 | COD去除率 /% | CN | CN去除率 /% | 诺氟沙星 /ng·L-1 | 诺氟沙星 去除率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
O3 | 渗滤液 | — | — | — | — | 625.8 | 100 | [ |
垃圾填埋场生物反应器 | 渗滤液 | 2176 | 56.32 | — | — | 840.25 | ~80 | [ |
nFe3O4-O3 | 渗滤液生化出水 | — | — | 0.19 | 89.80 | — | — | [ |
PFS出水 | 渗滤液生化出水 | 845 | 55.62 | 0.36 | 79.74 | 0.008 | 67.54 | 本研究 |
PFS-UV/O3 | 渗滤液生化出水 | 845 | 81.07 | 0.36 | 99.66 | 0.008 | 90.17 | 本研究 |
技术 | 能耗 /kW·h·(kg COD)-1 | 成本 /CNY·(kg COD)-1 | 参考文献 |
---|---|---|---|
混凝-O3/H2O2-BAF | 86.25 | 64.28 | [ |
紫外线/超声波/过-硫酸盐 | 86 | 54.80 | [ |
GAC-O3/H2O2 | — | 76.38 | [ |
O3/H2O2 | 82.65 | — | [ |
臭氧氧化 | — | 103.06 | [ |
PFS-O3 | 73.34 | 49.36 | 本研究 |
PFS-UV/O3 | 76.69 | 53.12 | 本研究 |
技术 | 能耗 /kW·h·(kg COD)-1 | 成本 /CNY·(kg COD)-1 | 参考文献 |
---|---|---|---|
混凝-O3/H2O2-BAF | 86.25 | 64.28 | [ |
紫外线/超声波/过-硫酸盐 | 86 | 54.80 | [ |
GAC-O3/H2O2 | — | 76.38 | [ |
O3/H2O2 | 82.65 | — | [ |
臭氧氧化 | — | 103.06 | [ |
PFS-O3 | 73.34 | 49.36 | 本研究 |
PFS-UV/O3 | 76.69 | 53.12 | 本研究 |
1 | YANG Yongyuan, LIU Ze, DEMEESTERE Kristof, et al. Ozonation in view of micropollutant removal from biologically treated landfill leachate: Removal efficiency, OH exposure, and surrogate-based monitoring[J]. Chemical Engineering Journal, 2021, 410: 128413. |
2 | BOLYARD Stephanie C, REINHART Debra R. Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality[J]. Waste Management, 2017, 65: 47-53. |
3 | JIANG Feng, QIU Bin, SUN Dezhi. Degradation of refractory organics from biologically treated incineration leachate by VUV/O3[J]. Chemical Engineering Journal, 2019, 370: 346-353. |
4 | QI Chengdu, HUANG Jun, WANG Bin, et al. Contaminants of emerging concern in landfill leachate in China: A review[J]. Emerging Contaminants, 2018, 4(1): 1-10. |
5 | SUI Qian, ZHAO Wentao, CAO Xuqi, et al. Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor[J]. Journal of Hazardous Materials, 2017, 323: 99-108. |
6 | WANG Kun, ZHUANG Tao, SU Zhaoxin, et al. Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: Occurrence, removal and environmental impacts[J]. Science of the Total Environment, 2021, 788: 147811. |
7 | BAI Xue, MU Shiqi, SONG Bowen, et al. Combination of coagulation, Fe0/H2O2 and ultra-high lime aluminium processes for the treatment of residual pollutants in biologically-treated landfill leachate[J]. Environmental Technology, 2024, 45(4): 667-680. |
8 | XU Q, SIRACUSA G, DI GREGORIO S, et al. COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs)[J]. Process Safety and Environmental Protection, 2018, 120: 278-285. |
9 | SANGUANPAK Samunya, CHIEMCHAISRI Wilai, CHIEMCHAISRI Chart. Membrane fouling and micro-pollutant removal of membrane bioreactor treating landfill leachate[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(4): 715-740. |
10 | BAI Fuliang, LIU Shuo, ZHANG Yingjie, et al. Effective and mechanistic insights into reverse osmosis concentrate of landfill leachate treatment using coagulation-catalytic ozonation-bioaugmentation-based AnMBR[J]. Chemical Engineering Journal, 2023, 463: 142430. |
11 | ZHAO Jianshu, OUYANG Feng, YANG Yaxin, et al. Degradation of recalcitrant organics in nanofiltration concentrate from biologically pretreated landfill leachate by ultraviolet-Fenton method[J]. Separation and Purification Technology, 2020, 235: 116076. |
12 | HASSAN Muhammad, WANG Xiaoyuan, WANG Fei, et al. Coupling ARB-based biological and photochemical (UV/TiO2 and UV/S2 O 8 2 - ) techniques to deal with sanitary landfill leachate[J]. Waste Management, 2017, 63: 292-298. |
13 | CHENG Wen, QUAN Xuejun, HUANG Xiaoxue, et al. Enhancement of micro-filtration performance for biologically-treated leachate from municipal solid waste by ozonation in a micro bubble reactor[J]. Separation and Purification Technology, 2018, 207: 535-542. |
14 | ZOLFAGHARI Mehdi, JARDAK Karama, DROGUI Patrick, et al. Landfill leachate treatment by sequential membrane bioreactor and electro-oxidation processes[J]. Journal of Environmental Management, 2016, 184: 318-326. |
15 | WANG Huawei, XIAO Wangsong, ZHANG Chen, et al. Effective removal of refractory organic contaminants from reverse osmosis concentrated leachate using PFS-nZVI/PMS/O3 process[J]. Waste Management, 2021, 128: 55-63. |
16 | KAUSLEY Shankar B, MALHOTRA Chetan P, PANDIT Aniruddha B. Treatment and reuse of shale gas wastewater: Electrocoagulation system for enhanced removal of organic contamination and scale causing divalent cations[J]. Journal of Water Process Engineering, 2017, 16: 149-162. |
17 | WANG Fan, LUO Yuangfeng, RAN Gang, et al. Sequential coagulation and Fe0-O3/H2O2 process for removing recalcitrant organics from semi-aerobic aged refuse biofilter leachate: Treatment efficiency and degradation mechanism[J]. Science of the Total Environment, 2020, 699: 134371. |
18 | TANG Guomin, WEI Yujiang, QIN Jiacheng, et al. Combined coagulation/decantation-ozone/hydrogen peroxide-biological aerated filter process for advanced treatment of bio-treated leachate from Chinese herbal medicine residue[J]. Environmental Science and Pollution Research International, 2021, 28(28): 37627-37635. |
19 | WANG Yanan, WANG Huawei, WU Yajing, et al. Effective removal of contaminants from biotreated leachate by a combined F e ( Ⅲ ) / O 3 process: Efficiency and mechanisms[J]. Journal of Cleaner Production, 2020, 276: 123379. |
20 | QI Chengdu, LIU Xitao, LIN Chunye, et al. Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity[J]. Chemical Engineering Journal, 2014, 249: 6-14. |
21 | LI Yazhuo, ZHANG Yibo, LI Zhang, et al. Characterization of colored dissolved organic matter in the northeastern South China Sea using EEMs-PARAFAC and absorption spectroscopy[J]. Journal of Sea Research, 2022, 180: 102159. |
22 | WANG Kun, REGUYAL Febelyn, ZHUANG Tao. Risk assessment and investigation of landfill leachate as a source of emerging organic contaminants to the surrounding environment: A case study of the largest landfill in Jinan City, China[J]. Environmental Science and Pollution Research International, 2021, 28(15): 18368-18381. |
23 | Evelin PAUCAR N, KIM IIho, TANAKA Hiroaki, et al. Effect of O3 dose on the O3/UV treatment process for the removal of pharmaceuticals and personal care products in secondary effluent[J]. ChemEngineering, 2019, 3(2): 53. |
24 | WANG Jianlong, ZHUAN Run. Degradation of antibiotics by advanced oxidation processes: An overview[J]. Science of the Total Environment, 2020, 701: 135023. |
25 | IAKOVIDES I C, MICHAEL-KORDATOU I, MOREIRA N F F, et al. Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity[J]. Water Research, 2019, 159: 333-347. |
26 | YU Huarong, QU Fangshu, ZHANG Xiaolei, et al. Development of correlation spectroscopy (COS) method for analyzing fluorescence excitation emission matrix (EEM): A case study of effluent organic matter (EfOM) ozonation[J]. Chemosphere, 2019, 228: 35-43. |
27 | 陈炜鸣, 张爱平, 李民, 等. O3/H2O2降解垃圾渗滤液浓缩液的氧化特性及光谱解析[J]. 中国环境科学, 2017, 37(6): 2160-2172. |
CHEN Weiming, ZHANG Aiping, LI Min, et al. Decomposition of organics in concentrated landfill leachate with ozone/hydrogen peroxide system: Oxidation characteristics and Spectroscopic analyses[J]. China Environmental Science, 2017, 37(6): 2160-2172. | |
28 | YANG Xuetong, DE BUYCK Pieter-Jan, ZHANG Rui, et al. Enhanced removal of refractory humic- and fulvic-like organics from biotreated landfill leachate by ozonation in packed bubble columns[J]. Science of the Total Environment, 2022, 807: 150762. |
29 | WANG Huijiao, MUSTAFA Majid, YU Gang, et al. Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process[J]. Chemosphere, 2019, 235: 575-585. |
30 | SU Yinglong, WANG Jiaxin, HUANG Zhiting, et al. On-site removal of antibiotics and antibiotic resistance genes from leachate by aged refuse bioreactor: Effects of microbial community and operational parameters[J]. Chemosphere, 2017, 178: 486-495. |
31 | HUANG Yuyu. Degradation of refractory organic matter in the effluent from a semi-aerobic aged refuse biofilter-treated landfill leachate by a nano-Fe3O4 enhanced ozonation process[J]. Waste Management & Research: the Journal for a Sustainable Circular Economy, 2022, 40(8): 1242-1255. |
32 | MORADIAN Fatemeh, RAMAVANDI Bahman, JAAFARZADEH Neemat, et al. Effective treatment of high-salinity landfill leachate using ultraviolet/ultrasonication/peroxymonosulfate system[J]. Waste Management, 2020, 118: 591-599. |
33 | YANG Yongyuan, RICOVERI Alex, DEMEESTERE Kristof, et al. Advanced treatment of landfill leachate through combined Anammox-based biotreatment, O3/H2O2 oxidation, and activated carbon adsorption: Technical performance, surrogate-based control strategy, and operational cost analysis[J]. Journal of Hazardous Materials, 2022, 430: 128481. |
34 | WANG Hao, ZHANG Siyu, HE Xuwen, et al. Comparison of macro and micro-pollutants abatement from biotreated landfill leachate by single ozonation, O3/H2O2, and catalytic ozonation processes[J]. Chemical Engineering Journal, 2023, 452: 139503. |
35 | Nuno AMARAL-SILVA, MARTINS Rui C, Sérgio CASTRO-SILVA, et al. Ozonation and perozonation on the biodegradability improvement of a landfill leachate[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 527-533. |
[1] | HE Zihan, LI Wenxuan, LI Yanyu, WANG Xuechao, YANG Shirong, XIE Huina, LI Jie. Progress in the study of antibiotic resistance genes in the aquatic environment [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 533-544. |
[2] | SONG Zhanlong, TANG Tao, PAN Wei, ZHAO Xiqiang, SUN Jing, MAO Yanpeng, WANG Wenlong. Micro-nano bubbles enhance ozone oxidation and degradation of wastewater containing phenol [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4614-4623. |
[3] | HU Junjie, HUANG Xingjun, LEI Cheng, YANG Min, LAN Yuanxiao, LUO Jianhong. Advanced treatment of small molecular organic in shale gas produced water [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4674-4680. |
[4] | YAO Fuchun, BI Yingying, TANG Chen, DU Minghui, LI Zeying, ZHANG Yaozong, SUN Xiaoming. Analysis of the mass transfer mechanism in a hollow fiber membrane ozone contact reactor [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1089-1097. |
[5] | YAO Fuchun, BI Yingying, LIU Chao, TANG Chen, LI Zeying, ZHANG Yaozong, SUN Xiaoming. Matrix analysis method to optimize the ozone membrane contact mass transfer technology [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6553-6562. |
[6] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[7] | ZHAN Yong, WANG Hui, WEI Tingting, ZHU Xingyu, WANG Xiankai, CHEN Sisi, DONG Bin. In situ reduction effect of Mn2+ enhanced ozone conditioning on sludge in biological treatment process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3253-3260. |
[8] | ZHU Hao, LIU Hanfei, GAO Yuan, BAI Rongrong, NI Songbo, HUANG Yiping, LI Qingtong, LI Xiaodong, HAN Weiqing. Parameter optimization of jet aeration in catalytic ozonation system and analysis of stage oxidation of phenol [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2717-2723. |
[9] | YANG Yuanyuan, LEI Ting, QIN Qingqing, WU Xiao, LI Jian, QIN Shuhao, LI Jiale, ZHANG Bingbing, REN Lulu. Structure and properties of PEO modified PVDF/SMA membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1515-1526. |
[10] | ZHU Jiaxin, ZHU Wenzhe, XU Jun, XIE Jing, WANG Wenbiao, XIE Li. Enhancement of anaerobic digestion under antibiotics stress via conductive materials application: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1008-1019. |
[11] | YING Luyao, WANG Rongchang. Removal pathways of antibiotic pollutants by bacterial-algal consortium and its stress response mechanisms [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 469-479. |
[12] | MA Yunfei, WANG Jianbing, JIA Chaomin, XING Yixin, KE Shu, ZHANG Xian. Recent progress of kinetics model and reactor modeling of ozonation [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 556-570. |
[13] | ZHU Hao, LIU Hanfei, JI Yufan, LI Shuangtao, HUANG Yiping, GAO Yuan, WEI Zhenhao, ZHU Kai, HAN Weiqing, WEI Kajia. Research advance and mechanism analysis of catalytic ozonation of phenolic compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 545-555. |
[14] | ZHONG Chuanrong, FENG Mingshi, ZENG Guangyu, HUANG Jinging, HE Xigao. Pre-treatment of the fracturing flow-back fluid of shale and solution structures of a flocculant [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5109-5114. |
[15] | LIU Hanfei, ZHU Hao, LI Shuangtao, JI Yufan, HUANG Yiping, HUANG Jingjing, NI Songbo, NI Zeyu. Preparation of attapulgite supported catalyst and its efficiency in treating low concentration organic matters [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5103-5108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |