Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 106-120.DOI: 10.16085/j.issn.1000-6613.2024-0822
• Chemical processes and equipment • Previous Articles Next Articles
LIANG Yongqi1,2(), TANG Jian1,2(), XIA Heng1,2, CHEN Jiakun1,2, QIAO Junfei1,2
Received:
2024-05-20
Revised:
2024-08-01
Online:
2024-12-06
Published:
2024-11-20
Contact:
TANG Jian
梁永琪1,2(), 汤健1,2(), 夏恒1,2, 陈佳昆1,2, 乔俊飞1,2
通讯作者:
汤健
作者简介:
梁永琪(1998—),男,硕士研究生,研究方向为数值仿真与建模。E-mail:1939097197@emails.bjut.edu.cn。
基金资助:
CLC Number:
LIANG Yongqi, TANG Jian, XIA Heng, CHEN Jiakun, QIAO Junfei. Modeling and analysis of particulate matter concentration in incinerator under benchmark conditions based on coupled numerical simulation[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 106-120.
梁永琪, 汤健, 夏恒, 陈佳昆, 乔俊飞. 基于耦合数值仿真的基准工况下焚烧炉内颗粒物浓度建模与分析[J]. 化工进展, 2024, 43(S1): 106-120.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0822
组成 | MSW |
---|---|
工业分析/% | |
水 | 49.7 |
挥发分 | 32.22 |
固定碳 | 7.82 |
灰 | 10.26 |
元素分析/% | |
C | 60.62 |
H | 8.09 |
O | 29.93 |
N | 1.12 |
S | 0.11 |
组成 | MSW |
---|---|
工业分析/% | |
水 | 49.7 |
挥发分 | 32.22 |
固定碳 | 7.82 |
灰 | 10.26 |
元素分析/% | |
C | 60.62 |
H | 8.09 |
O | 29.93 |
N | 1.12 |
S | 0.11 |
参数 | 数值 |
---|---|
额定处理量/t·d-1 | 800 |
实际处理量/t·d-1 | 624 |
炉排类型 | 往复式炉排炉 |
炉排长×宽/m | 11×12.9 |
炉排速度/m·h-1 | 7.5 |
一次风流量/m3·h-1 | 65400 |
二次风流量/m3·h-1 | 5580 |
一次风温度/℃ | 473 |
一次风分布 | 24.31, 43.35, 19.27, 13.07 |
参数 | 数值 |
---|---|
额定处理量/t·d-1 | 800 |
实际处理量/t·d-1 | 624 |
炉排类型 | 往复式炉排炉 |
炉排长×宽/m | 11×12.9 |
炉排速度/m·h-1 | 7.5 |
一次风流量/m3·h-1 | 65400 |
二次风流量/m3·h-1 | 5580 |
一次风温度/℃ | 473 |
一次风分布 | 24.31, 43.35, 19.27, 13.07 |
参数 | 数值 |
---|---|
进料速度/kg·h-1 | 24000 |
一次风量/m3·h-1 | 65400 |
一次风温度/℃ | 473 |
炉排速度/m·h-1 | 7.5 |
MSW粒径/mm | 25 |
混合系数 | 2~6 |
辐射率/% | 80 |
含水率/% | 49.7 |
参数 | 数值 |
---|---|
进料速度/kg·h-1 | 24000 |
一次风量/m3·h-1 | 65400 |
一次风温度/℃ | 473 |
炉排速度/m·h-1 | 7.5 |
MSW粒径/mm | 25 |
混合系数 | 2~6 |
辐射率/% | 80 |
含水率/% | 49.7 |
设置参数 | 温度/K |
---|---|
二次风入口 | 312.5 |
出口 | 1000 |
一烟道壁面 | 750 |
二烟道壁面 | 600 |
三烟道壁面 | 450 |
设置参数 | 温度/K |
---|---|
二次风入口 | 312.5 |
出口 | 1000 |
一烟道壁面 | 750 |
二烟道壁面 | 600 |
三烟道壁面 | 450 |
序号 | 设置参数 | 设置值 |
---|---|---|
1 | 喷射源类型 | Group |
2 | 喷射位置 | 炉排上方 |
3 | 材料 | Ash-soild |
4 | 直径分布 | Rosin-rammler |
5 | 干燥段上方喷射流数量 | 10 |
6 | 燃烧段1上方喷射流数量 | 28 |
7 | 燃烧段2上方喷射流数量 | 12 |
8 | 燃烬段上方喷射流数量 | 12 |
序号 | 设置参数 | 设置值 |
---|---|---|
1 | 喷射源类型 | Group |
2 | 喷射位置 | 炉排上方 |
3 | 材料 | Ash-soild |
4 | 直径分布 | Rosin-rammler |
5 | 干燥段上方喷射流数量 | 10 |
6 | 燃烧段1上方喷射流数量 | 28 |
7 | 燃烧段2上方喷射流数量 | 12 |
8 | 燃烬段上方喷射流数量 | 12 |
序号 | 设置参数 | 设置值 |
---|---|---|
1 | 温度/K | 300 |
2 | 速度大小/m·s-1 | 0 |
3 | 干燥段上方颗粒流量/kg·s-1 | 0.02 |
4 | 燃烧段1上方颗粒流量/kg·s-1 | 0.04 |
5 | 燃烧段2上方颗粒流量/kg·s-1 | 0.02 |
6 | 燃烬段上方颗粒流量/kg·s-1 | 0.005 |
7 | 最小直径/μm | 35 |
8 | 最大直径/μm | 75 |
9 | 平均直径/μm | 45 |
10 | 发散系数 | 3.5 |
11 | 曳力准则 | Grace |
12 | 旋转曳力准则 | Dennis-et-al |
13 | Magnus升力定律 | Oesterle-Bui-Dinh |
14 | 粗糙壁面模型 | 开启 |
15 | 离散随机轨迹模型 | 开启 |
16 | 尝试次数 | 3 |
17 | 时间尺度常数 | 0.15 |
序号 | 设置参数 | 设置值 |
---|---|---|
1 | 温度/K | 300 |
2 | 速度大小/m·s-1 | 0 |
3 | 干燥段上方颗粒流量/kg·s-1 | 0.02 |
4 | 燃烧段1上方颗粒流量/kg·s-1 | 0.04 |
5 | 燃烧段2上方颗粒流量/kg·s-1 | 0.02 |
6 | 燃烬段上方颗粒流量/kg·s-1 | 0.005 |
7 | 最小直径/μm | 35 |
8 | 最大直径/μm | 75 |
9 | 平均直径/μm | 45 |
10 | 发散系数 | 3.5 |
11 | 曳力准则 | Grace |
12 | 旋转曳力准则 | Dennis-et-al |
13 | Magnus升力定律 | Oesterle-Bui-Dinh |
14 | 粗糙壁面模型 | 开启 |
15 | 离散随机轨迹模型 | 开启 |
16 | 尝试次数 | 3 |
17 | 时间尺度常数 | 0.15 |
水平 | A/m·s-1 | B/μm | C |
---|---|---|---|
1 | 0.05 | 35 | trap |
2 | 0.1 | 40 | reflect |
3 | 0.15 | 45 | wall-jet |
4 | 0.2 | 50 | — |
5 | 0.25 | 55 | — |
6 | 0.3 | 60 | — |
7 | 0.35 | 65 | — |
水平 | A/m·s-1 | B/μm | C |
---|---|---|---|
1 | 0.05 | 35 | trap |
2 | 0.1 | 40 | reflect |
3 | 0.15 | 45 | wall-jet |
4 | 0.2 | 50 | — |
5 | 0.25 | 55 | — |
6 | 0.3 | 60 | — |
7 | 0.35 | 65 | — |
案例 | A/m·s-1 | B/μm | C | 颗粒物浓度/kg·m-3 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 0.0004364565 |
2 | 1 | 2 | 2 | 0.005192173 |
3 | 1 | 3 | 3 | 0.004967875 |
47 | 5 | 7 | 1 | 0.001560492 |
48 | 6 | 1 | 1 | 0.0008457572 |
49 | 7 | 5 | 1 | 0.001173455 |
案例 | A/m·s-1 | B/μm | C | 颗粒物浓度/kg·m-3 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 0.0004364565 |
2 | 1 | 2 | 2 | 0.005192173 |
3 | 1 | 3 | 3 | 0.004967875 |
47 | 5 | 7 | 1 | 0.001560492 |
48 | 6 | 1 | 1 | 0.0008457572 |
49 | 7 | 5 | 1 | 0.001173455 |
指标 | A | B | C |
---|---|---|---|
极差R | 0.001733 | 0.002255 | 0.004010 |
主次顺序 | C>B>A | ||
最优水平 |
指标 | A | B | C |
---|---|---|---|
极差R | 0.001733 | 0.002255 | 0.004010 |
主次顺序 | C>B>A | ||
最优水平 |
1 | CHHAY Leaksmy, REYAD Md Amjad Hossain, Rathny SUY, et al. Municipal solid waste generation in China: Influencing factor analysis and multi-model forecasting[J]. Journal of Material Cycles and Waste Management. 2018, 20(3): 1761-1770. |
2 | 汤健, 夏恒, 余文, 等. 城市固废焚烧过程智能优化控制研究现状与展望[J]. 自动化学报, 2023, 49(10): 2019-2059. |
TANG Jian, XIA Heng, YU Wen, et al. Research status and prospects of intelligent optimization control for municipal solid waste incineration process[J]. Acta Automatica Sinica. 2023, 49(10): 2019-2059. | |
3 | LI Yang, ZHANG Jianliang, LIU Zhengjian, et al. Harmless treatment of municipal solid waste incinerator fly ash through shaft furnace[J]. Waste Management, 2021, 124: 110-117. |
4 | ZHANG Ming, WEI Junxiao, LI Huan, et al. Comparing and optimizing municipal solid waste (MSW) management focused on air pollution reduction from MSW incineration in China[J]. Science of The Total Environment, 2024, 907: 167952. |
5 | KHAN Shamshad, ANJUM Raheel, RAZA Syed Turad, et al. Technologies for municipal solid waste management: Current status, challenges, and future perspectives[J]. Chemosphere. 2022, 288: 132403. |
6 | PAN Xiaotong, TANG Jian, XIA Heng, et al. Combustion state identification of MSWI processes using ViT-IDFC[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106893. |
7 | ZHUANG Jiabin, TANG Jian, ALJERF Loai. Comprehensive review on mechanism analysis and numerical simulation of municipal solid waste incineration process based on mechanical grate [J]. Fuel, 2022, 320: 123826. |
8 | 乔俊飞, 郭子豪, 汤健. 面向城市固废焚烧过程的二 英排放浓度检测方法综述[J]. 自动化学报, 2020, 46(6): 1063-1089. |
QIAO Junfei, GUO Zihao, TANG Jian. Dioxin emission concentration measurement approaches for municipal solid wastes incineration process: a survey[J]. Acta Automatica Sinica, 2020, 46(6): 1063-1089. | |
9 | LIU Yuanyuan, WANG Jiajia, LIN Xiang, et al. Microstructures and thermal properties of municipal solid waste incineration fly ash[J]. Journal of Central South University, 2012, 19(3): 855-862. |
10 | WAN Xiao, WANG Wei, YE Tunmin, et al. A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure[J]. Journal of Hazardous Materials, 2006, 134 (1/2/3): 197-201. |
11 | BERNASCONI Davide, CAVIGLIA Caterina, DESTEFANIS Enrico, et al. Influence of speciation distribution and particle size on heavy metal leaching from MSWI fly ash[J]. Waste Management, 2022, 138: 318-327. |
12 | SHUNDA Lin, JIANG Xuguang, ZHAO Yimeng, et al. Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review[J]. Environmental Pollution, 2022, 311: 119878. |
13 | BADREDDINE R, FRANÇOIS D. Assessment of the PCDD/F fate from MSWI residue used in road construction in France[J]. Chemosphere. 2009, 74(3): 363-369. |
14 | DAHLAN Astryd Viandila, KITAMURA Hiroki, TIAN Yu, et al. Heterogeneities of fly ash particles generated from a fluidized bed combustor of municipal solid waste incineration[J]. Journal of Material Cycles and Waste Management, 2020, 22(3): 836-850. |
15 | ZHAO Hang, TIAN Yang, WANG Rong, et al. Seasonal variation of the mobility and toxicity of metals in Beijing’s municipal solid waste incineration fly ash[J]. Sustainability, 2021, 13(12): 6532. |
16 | ZHANG Ruichang, WEI Xuefeng, HAO Qiang, et al. Bioleaching of heavy metals from municipal solid waste incineration fly ash: Availability of recoverable sulfur prills and form transformation of heavy metals[J]. Metals. 2020, 10(6): 815. |
17 | WANG Weifeng, YU Jie, CUI Yang, et al. Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China[J]. Atmospheric Research, 2018, 203: 105-117. |
18 | NGUYEN Thi Hue, PHAM Quoc Viet, NGUYEN Thi Phuong Mai, et al. Distribution characteristics and ecological risks of heavy metals in bottom ash, fly ash, and particulate matter released from municipal solid waste incinerators in northern Vietnam[J]. Environmental Geochemistry and Health, 2023, 45(5): 2579-2590. |
19 | CHANG Feng Yim, Ming Yen WEY. Comparison of the characteristics of bottom and fly ashes generated from various incineration processes[J]. Journal of Hazardous Materials, 2006, 138(3): 594-603. |
20 | CHEN Jiakun, TANG Jian, XIA Heng, et al. A non-manipulated variable analysis of solid-phase combustion in the furnace of municipal solid-waste incineration process based on the biorthogonal numerical-simulation experiment[J]. Sustainability, 2023, 15(19): 14159. |
21 | LIANG Yongqi, TANG Jian, XIA Heng, et al. Three-dimensional numerical modeling and analysis for the municipal solid-waste incineration of the grate furnace for particulate-matter generation. Sustainability, 2023, 15(16): 12337. |
22 | HUAI X L, XU W L, QU Z Y, et al. Numerical simulation of municipal solid waste combustion in a novel two-stage reciprocating incinerator[J]. Waste Management, 2008, 28(1): 15-29. |
23 | WANG Jingfu, XUE Yanqing, ZHANG Xinxin, et al. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator[J]. Waste Management, 2015, 44: 116-124. |
24 | GU Tianbao, MA Wenchao, BERNING Torsten, et al. Advanced simulation of a 750 t/d municipal solid waste grate boiler to better accommodate feedstock changes due to waste classification[J]. Energy, 2022, 254: 124338. |
25 | HUAI X L, XU W L, QU Z Y,et al. Analysis and optimization of municipal solid waste combustion in a reciprocating incinerator[J]. Chemical Engineering Science, 2008, 63(12): 3100-3113. |
26 | TANG Jian, ZHUANG Jiabin, ALJERF Loai, et al. Numerical simulation modelling on whole municipal solid waste incineration process by coupling multiple software for the analysis of grate speed and air volume ratio[J]. Process Safety and Environmental Protection, 2023, 176: 506-527. |
27 | 杨旭, 余昭胜, 何玉荣, 等. 垃圾焚烧炉中城市生活垃圾掺烧高热值工业固废的数值模拟[J]. 洁净煤技术. 2023, 29(9): 98-108. |
YANG Xu, YU Zhaosheng, HE Yurong, et al. Numerical simulation of municipal domestic waste blending with combustion ofhigh calorific value industrial solid waste in waste incineration furnace[J]. Clean Coal Technology, 2023, 29(9): 98-108. | |
28 | YANG Y B, GOH Y R, ZAKARIA R, et al. Mathematical modelling of MSW incineration on a travelling bed[J]. Waste Management, 2002, 22(4): 369-380. |
29 | YANG Yaobin, SHARIFI VidaN, SWITHENBANK Jim. Numerical simulation of municipal solid waste incineration in a moving-grate furnace and the effect of waste moisture content[J]. Progress in Computational Fluid Dynamics, 2007, 7(5): 261-273. |
30 | YANG Yaobin, SHARIFI Vida N, SWITHENBANK Jim. Converting moving-grate incineration from combustion to gasification-Numerical simulation of the burning characteristics[J]. Waste Management, 2007, 27(5): 645-655. |
31 | WANG Tiantian, ZHOU Guo, JIANG Chen, et al. A coupled cell-based smoothed finite element method and discrete phase model for incompressible laminar flow with dilute solid particles[J]. Engineering Analysis with Boundary Elements, 2022, 143: 190-206. |
32 | MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193-208. |
[1] | YAO Fuchun, BI Yingying, LIU Chao, TANG Chen, LI Zeying, ZHANG Yaozong, SUN Xiaoming. Matrix analysis method to optimize the ozone membrane contact mass transfer technology [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6553-6562. |
[2] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[3] | CHEN Jiakun, TANG Jian, XIA Heng, QIAO Junfei. Numerical simulation of dioxin emission concentration in grate furnace incineration processes for municipal solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1061-1072. |
[4] | YIN Xiaoyun, FU Linhao, LI Jiayi, CHENG Sijie, JING Jiaqiang, MASTOBAEV Boris N, SUN Jie. Analysis of restart-up pressure drop characteristics of heavy oil-water ring transportation pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5669-5679. |
[5] | ZHENG Jin, HAN Ruirui, LI Dandan, WANG Xinyu, GAO Chunyang, DU Xianyuan, ZHANG XiaoFei, ZOU Dexun. Joint remediation of petroleum contaminated soil by urea peroxide with microorganism [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5085-5093. |
[6] | DING Xingjiang, ZHANG Xuelai, ZHU Jiahao, MAO Fa, FANG Manting, FENG Tianping. Statistical analysis for supercooling characteristics experiments of sodium acetate trihydrate composite phase change materials [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5946-5960. |
[7] | LIU Shaobin, QI Hong, YU Zhiqiang, HE Mingjian, YU Xikui. Performance analysis and parameter optimization of mini-channel using Taguchi method [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6409-6422. |
[8] | Ruixiang ZHANG,Peng WANG,Tingting WU,Jianzhong LIU,Junhu ZHOU. Influence of acoustic wave and water spray on the agglomeration of fly ash particles [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 858-863. |
[9] | Bo XU, Yongzhi CHI, Hongli ZHANG, Jianhai ZHAO, Yanmei DING, Yifan ZHANG, Yuyou LI. Enhanced treatment of anaerobic digestion reject water by magnetic flocculation technology [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4693-4701. |
[10] | LI Li, YAN Yuegen, WU Huaming. Spray drying technology of a sludge reduction bacteria [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 193-200. |
[11] | Wenwen ZENG,Fujie DENG,Jingbo CAI,Feng WANG. Construction method and application of real-time monitoring and warning model of ethylene oxide reactor leakage [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5200-5209. |
[12] | Zhihong WANG, Xiaoming DING, Ming’ou WU, Xiaoyan SHEN. Application of organic Rankine cycle in multi-grade waste heat power generation [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2189-2196. |
[13] | Xin GU, Zhiyang ZHENG, Yuankun LUO, Xiaochao XIONG, Dabo ZHANG. Optimization on shell side structure of twisty flow heat exchanger based on orthogonal experiment [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1688-1695. |
[14] | XU Zhen, LU Xiaofeng, LEI Xiujian, SUN Sicong, ZHOU Silin, WANG Quanhai, XIE Xiong, LIU Changxu. Experiments on solids distribution characteristics in the 60-meter-high cold CFB rectangle riser [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 2948-2953. |
[15] | GUO Rui, SONG Bo, GUO Yu, LI Yunpeng, TU Ruixiang, WANG Yingyue, MA Lan. Synthesis and process optimization of lignosulfonate graft copolymer [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1962-1967. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |