Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 5085-5093.DOI: 10.16085/j.issn.1000-6613.2021-2444
• Resources and environmental engineering • Previous Articles Next Articles
ZHENG Jin1,2(), HAN Ruirui1,2,3(), LI Dandan1,2, WANG Xinyu1,2,4, GAO Chunyang1,2, DU Xianyuan1,2(), ZHANG XiaoFei1,2, ZOU Dexun3
Received:
2021-11-29
Revised:
2022-03-16
Online:
2022-09-27
Published:
2022-09-25
Contact:
DU Xianyuan
郑瑾1,2(), 韩瑞瑞1,2,3(), 李丹丹1,2, 王馨妤1,2,4, 高春阳1,2, 杜显元1,2(), 张晓飞1,2, 邹德勋3
通讯作者:
杜显元
作者简介:
郑瑾(1985—),女,博士,高级工程师,研究方向为土壤修复、环境生物技术。E-mail:zhengjin2810@163.com基金资助:
CLC Number:
ZHENG Jin, HAN Ruirui, LI Dandan, WANG Xinyu, GAO Chunyang, DU Xianyuan, ZHANG XiaoFei, ZOU Dexun. Joint remediation of petroleum contaminated soil by urea peroxide with microorganism[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5085-5093.
郑瑾, 韩瑞瑞, 李丹丹, 王馨妤, 高春阳, 杜显元, 张晓飞, 邹德勋. 过氧化尿素与微生物联合修复石油污染土壤[J]. 化工进展, 2022, 41(9): 5085-5093.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2444
指标名称 | 值 |
---|---|
石油烃/mg·kg-1 | 44191 |
含水率/% | 1.54 |
pH | 8.17 |
有机碳/g·kg-1 | 71.19 |
(总氮/总磷)/g·kg-1 | 1.19/0.57 |
氨氮/mg·kg-1 | 2.72 |
饱和烃/% | 56.12 |
芳香烃/% | 23.60 |
胶质/% | 20.28 |
指标名称 | 值 |
---|---|
石油烃/mg·kg-1 | 44191 |
含水率/% | 1.54 |
pH | 8.17 |
有机碳/g·kg-1 | 71.19 |
(总氮/总磷)/g·kg-1 | 1.19/0.57 |
氨氮/mg·kg-1 | 2.72 |
饱和烃/% | 56.12 |
芳香烃/% | 23.60 |
胶质/% | 20.28 |
水平 | UHP质量分数(A)/% | UHP∶Fe2+ (E) | 水∶土(C) |
---|---|---|---|
1 | 1 | 10∶1 | 1∶2 |
2 | 2 | 30∶1 | 1∶1 |
3 | 4 | 50∶1 | 3∶2 |
水平 | UHP质量分数(A)/% | UHP∶Fe2+ (E) | 水∶土(C) |
---|---|---|---|
1 | 1 | 10∶1 | 1∶2 |
2 | 2 | 30∶1 | 1∶1 |
3 | 4 | 50∶1 | 3∶2 |
实验序号 | 水平组合 | 实验条件 | ||
---|---|---|---|---|
UHP质量分数(A)/% | UHP∶Fe 2+(E) | 水∶土(C) | ||
1 | A1E1C1 | 1 | 10∶1 | 1∶2 |
2 | A1E2C2 | 1 | 30∶1 | 1∶1 |
3 | A1E3C3 | 1 | 50∶1 | 3∶2 |
4 | A2E1C2 | 2 | 10∶1 | 1∶1 |
5 | A2E2C3 | 2 | 30∶1 | 3∶2 |
6 | A2E3C1 | 2 | 50∶1 | 1∶2 |
7 | A3E1C3 | 4 | 10∶1 | 3∶2 |
8 | A3E2C1 | 4 | 30∶1 | 1∶2 |
9 | A3E3C2 | 4 | 50∶1 | 1∶1 |
实验序号 | 水平组合 | 实验条件 | ||
---|---|---|---|---|
UHP质量分数(A)/% | UHP∶Fe 2+(E) | 水∶土(C) | ||
1 | A1E1C1 | 1 | 10∶1 | 1∶2 |
2 | A1E2C2 | 1 | 30∶1 | 1∶1 |
3 | A1E3C3 | 1 | 50∶1 | 3∶2 |
4 | A2E1C2 | 2 | 10∶1 | 1∶1 |
5 | A2E2C3 | 2 | 30∶1 | 3∶2 |
6 | A2E3C1 | 2 | 50∶1 | 1∶2 |
7 | A3E1C3 | 4 | 10∶1 | 3∶2 |
8 | A3E2C1 | 4 | 30∶1 | 1∶2 |
9 | A3E3C2 | 4 | 50∶1 | 1∶1 |
处理组 | 实验方法 |
---|---|
CK | 菌剂及氧化剂无添加 |
B | 10% 的菌剂 |
UF | UHP(4%,质量分数)、UHP∶Fe 2+ (摩尔比)=30∶1 |
UF+B | UF为UHP(4%,质量分数)、UHP∶Fe 2+ (摩尔比)= 30∶1;B为10%的菌剂 |
B+UF | B为10%的菌剂;UF为UHP(4%,质量分数)、 UHP∶Fe 2+ (摩尔比)=30∶1 |
处理组 | 实验方法 |
---|---|
CK | 菌剂及氧化剂无添加 |
B | 10% 的菌剂 |
UF | UHP(4%,质量分数)、UHP∶Fe 2+ (摩尔比)=30∶1 |
UF+B | UF为UHP(4%,质量分数)、UHP∶Fe 2+ (摩尔比)= 30∶1;B为10%的菌剂 |
B+UF | B为10%的菌剂;UF为UHP(4%,质量分数)、 UHP∶Fe 2+ (摩尔比)=30∶1 |
实验序号 | 实验条件 | 石油 降解率/% | ||
---|---|---|---|---|
UHP质量分数(A) | UHP∶Fe 2+ (E) | 水∶土(C) | ||
1 | 1% | 10∶1 | 1∶2 | 27.85 |
2 | 1% | 30∶1 | 1∶1 | 31.66 |
3 | 1% | 50∶1 | 3∶2 | 29.39 |
4 | 2% | 10∶1 | 1∶1 | 33.58 |
5 | 2% | 30∶1 | 3∶2 | 34.34 |
6 | 2% | 50∶1 | 1∶2 | 29.39 |
7 | 4% | 10∶1 | 3∶2 | 38.53 |
8 | 4% | 30∶1 | 1∶2 | 40.81 |
9 | 4% | 50∶1 | 1∶1 | 34.34 |
k1 | 87.98 | 99.50 | 97.39 | |
k2 | 97.06 | 106.25 | 99.21 | |
k3 | 112.90 | 92.18 | 101.35 | |
k1 | 29.33 | 33.17 | 32.46 | |
k2 | 32.35 | 35.42 | 33.07 | |
k3 | 37.63 | 30.73 | 33.78 | |
R | 8.31 | 4.69 | 1.32 |
实验序号 | 实验条件 | 石油 降解率/% | ||
---|---|---|---|---|
UHP质量分数(A) | UHP∶Fe 2+ (E) | 水∶土(C) | ||
1 | 1% | 10∶1 | 1∶2 | 27.85 |
2 | 1% | 30∶1 | 1∶1 | 31.66 |
3 | 1% | 50∶1 | 3∶2 | 29.39 |
4 | 2% | 10∶1 | 1∶1 | 33.58 |
5 | 2% | 30∶1 | 3∶2 | 34.34 |
6 | 2% | 50∶1 | 1∶2 | 29.39 |
7 | 4% | 10∶1 | 3∶2 | 38.53 |
8 | 4% | 30∶1 | 1∶2 | 40.81 |
9 | 4% | 50∶1 | 1∶1 | 34.34 |
k1 | 87.98 | 99.50 | 97.39 | |
k2 | 97.06 | 106.25 | 99.21 | |
k3 | 112.90 | 92.18 | 101.35 | |
k1 | 29.33 | 33.17 | 32.46 | |
k2 | 32.35 | 35.42 | 33.07 | |
k3 | 37.63 | 30.73 | 33.78 | |
R | 8.31 | 4.69 | 1.32 |
组别 | Ace | Chao | Shannon | Simpson | Coverage |
---|---|---|---|---|---|
CK | 1028 | 1038 | 4.95 | 0.018 | 0.997 |
UF | 903 | 876 | 3.85 | 0.073 | 0.993 |
B | 839 | 826 | 3.48 | 0.110 | 0.996 |
UF+B | 825 | 844 | 4.11 | 0.041 | 0.997 |
B+UF | 961 | 828 | 3.72 | 0.051 | 0.996 |
组别 | Ace | Chao | Shannon | Simpson | Coverage |
---|---|---|---|---|---|
CK | 1028 | 1038 | 4.95 | 0.018 | 0.997 |
UF | 903 | 876 | 3.85 | 0.073 | 0.993 |
B | 839 | 826 | 3.48 | 0.110 | 0.996 |
UF+B | 825 | 844 | 4.11 | 0.041 | 0.997 |
B+UF | 961 | 828 | 3.72 | 0.051 | 0.996 |
1 | LI Lei, SHEN Xinqiang, JIANG Mei. Characteristics of total petroleum hydrocarbon contamination in sediments in the Yangtze Estuary and adjacent sea areas[J]. Continental Shelf Research, 2019, 175: 110-115. |
2 | ZHANG Guichi, WANG Jian, ZHAO Hui, et al. PAH degradation and gene abundance in soils and vegetables inoculated with PAH-degrading endophytic bacteria[J]. Applied Soil Ecology, 2021, 168: 104193. |
3 | 肖元松, 彭福田, 束怀瑞, 等. 过氧化尿素对桃幼树淹水胁迫的缓解效果研究[J]. 植物营养与肥料学报, 2016, 22(2): 502-510. |
XIAO Yuansong, PENG Futian, SHU Huairui, et al. Alleviation of urea peroxide to waterlogging damage in young peach trees[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 502-510. | |
4 | 何红振, 李韶峰, 于文杰. 过氧化尿素的合成及其应用研究进展[J]. 化学推进剂与高分子材料, 2016, 14(4): 19-31, 43. |
HE Hongzhen, LI Shaofeng, YU Wenjie. Synthesis of urea peroxide and research progress of its application[J]. Chemical Propellants & Polymeric Materials, 2016, 14(4): 19-31, 43. | |
5 | 秦娇龙. 生物炭活化过氧化尿素对土壤熏蒸剂的吸附降解及其大气散发的控制[D]. 上海: 上海交通大学, 2019. |
QIN Jiaolong. Activation of urea-hydrogen peroxide by biochar to adsorb and degradate soil fumigant and reduce its soil-air emissions[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
6 | LI Dan, ZHAO Yaqin, WANG Liping, et al. Remediation of phenanthrene contaminated soil through persulfate oxidation coupled microbial fortification[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106098. |
7 | XU Shen, WANG Wei, ZHU Lizhong. Enhanced microbial degradation of benzo[a]pyrene by chemical oxidation[J]. Science of the Total Environment, 2019, 653: 1293-1300. |
8 | XU Jinlan, DU Juan, LI Lu, et al. Fast-stimulating bioremediation of macro crude oil in soils using matching Fenton pre-oxidation[J]. Chemosphere, 2020, 252: 126622. |
9 | 高春阳. Fenton氧化联合微生物降解原油污染土壤的研究[D]. 北京: 中国地质大学(北京), 2019. |
GAO Chunyang. Fenton pre-oxidation followed by microbial degradation to remove crude oil from contaminated soil[D]. Beijing: China University of Geosciences, 2019. | |
10 | 罗玉虎, 卢楠. 芬顿法修复石油污染土壤使用条件优化的研究[J]. 土地开发工程研究, 2019, 4(4): 33-37. |
LUO Yuhu, LU Nan. Optimization of soil use conditions using Fenton method for repairing oil-contaminated soil[J]. Land Development and Engineering Research, 2019, 4(4): 33-37. | |
11 | 朱瑞利. 两种氧化体系联合生物刺激修复总石油烃污染土壤[J]. 化工环保, 2021, 41(6): 750-754. |
ZHU Ruili. Remediation of total petroleum hydrocarbon contaminated soil using two different oxidation systems combined with biostimulation[J]. Environmental Protection of Chemical Industry, 2021, 41(6): 750-754. | |
12 | 张碧波, 陈剑, 冉启洋, 等. 柠檬酸改性芬顿对土壤中石油烃的去除效果[J]. 湖南农业科学, 2019(12): 38-41. |
ZHANG Bibo, CHEN Jian, RAN Qiyang, et al. Practical application of citric acid modified Fenton to remove petroleum hydrocarbons from soil[J]. Hunan Agricultural Sciences, 2019(12): 38-41. | |
13 | WANG Hongqi, HUA Fei, ZHAO Yicun, et al. Immobilization of pseudomonas sp. DG17 onto sodium alginate-attapulgite-calcium carbonate[J]. Biotechnology & Biotechnological Equipment, 2014, 28(5): 834-842. |
14 | 郑瑾, 王馨妤, 李杰, 等. 腐植酸改性生物质电厂灰固定化微生物修复石油烃污染土壤[J]. 环境工程, 2020, 38(8): 34-40. |
ZHENG Jin, WANG Xinyu, LI Jie, et al. Bioremediation of crude oil in contaminated soil by microorganisms immobilized with humic acid-modified biofuel ash[J]. Environmental Engineering, 2020, 38(8): 34-40. | |
15 | 张雪苍, 周国磊, 傅科涵, 等. Soleris检测技术在焙烤食品微生物检测中的应用研究[J]. 食品科技, 2020, 45(4): 321-326. |
ZHANG Xuecang, ZHOU Guolei, FU Kehan, et al. Application of soleris system in the detection of microorganism in baked food[J]. Food Science and Technology, 2020, 45(4): 321-326. | |
16 | HU Weigang, RAN Jinzhi, DONG Longwei, et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships[J]. Nature Communications, 2021, 12(1): 5350. |
17 | WANG Yu, GAO Congyu, ZHANG Yizhen, et al. Bimetal-organic framework derived CoFe/NC porous hybrid nanorods as high-performance persulfate activators for bisphenol a degradation[J]. Chemical Engineering Journal, 2021, 421: 127800. |
18 | TANG Xianjin, HASHMI Muhammad Zaffar, ZENG Biao, et al. Application of iron-activated persulfate oxidation for the degradation of PCBs in soil[J]. Chemical Engineering Journal, 2015, 279: 673-680. |
19 | WANG Qing, WANG Beibei, MA Yuan, et al. Enhanced superoxide radical production for ofloxacin removal via persulfate activation with Cu-Fe oxide[J]. Chemical Engineering Journal, 2018, 354: 473-480. |
20 | ABENA Marie Thérèse Bidja, LI Tongtong, SHAH Muhammad Naeem, et al. Biodegradation of total petroleum hydrocarbons (TPH) in highly contaminated soils by natural attenuation and bioaugmentation[J]. Chemosphere, 2019, 234: 864-874. |
21 | 韩旭, 李广云, 尹宁宁, 等. Fenton氧化-微生物法降解土壤中石油烃[J]. 化工环保, 2017, 37(2): 237-242. |
HAN Xu, LI Guangyun, YIN Ningning, et al. Degradation of petroleum hydrocarbons in soil by Fenton oxidation-microbial method[J]. Environmental Protection of Chemical Industry, 2017, 37(2): 237-242. | |
22 | 汪林, 蒲思淇, 王明新, 等. 过碳酸钠修复石油污染土壤及其环境效应[J]. 化工进展, 2022, 41(4): 2171-2179. |
WANG lin, PU Siqi, WANG Mingxin, et al. Remediation of petroleum-contaminated soil by sodium percarbonate and its environmental effects[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2171-2179. | |
23 | 刘其友, 李琳, 张云波, 等. Fenton氧化技术处理稠油污染土壤[J]. 环境工程学报, 2013, 7(4): 1563-1567. |
LIU Qiyou, LI Lin, ZHANG Yunbo, et al. Heavy oil-contaminated soils remediation by Fenton oxidation[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1563-1567. | |
24 | FRANKENBERGER W T Jr. Factors affecting the fate of urea peroxide added to soil[J]. Bulletin of Environmental Contamination and Toxicology, 1997, 59(1): 50-57. |
25 | 高春阳, 韩占涛, 陈昌照, 等. 过氧化氢、过碳酸钠活化过硫酸钠氧化-微生物降解联用技术修复原油污染土壤[J]. 化工环保, 2019, 39(1): 71-76. |
GAO Chunyang, HAN Zhantao, CHEN Changzhao, et al. Remediation of crude oil contaminated soil by H2O2 and Na2CO3·1.5H2O2 activated Na2S2O8 oxidation-microbial degradation combination process[J]. Environmental Protection of Chemical Industry, 2019, 39(1): 71-76. | |
26 | 张博凡, 徐文斐, 王加华, 等. 菌糠炭与微生物协同吸附-降解石油烃类污染物[J]. 石油学报(石油加工), 2019, 35(4): 736-743. |
ZHANG Bofan, XU Wenfei, WANG Jiahua, et al. Adsorption and degradation of petroleum hydrocarbon with biochars and microorganisms[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(4): 736-743. | |
27 | XU Jinlan, XIN Lei, HUANG Tinglin, et al. Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation[J]. Journal of Environmental Sciences, 2011, 23(11): 1873-1879. |
28 | 苏荣国, 牟伯中, 王修林, 等. 微生物对石油烃的降解机理及影响因素[J]. 化工环保, 2001, 21(4): 205-208. |
SU Rongguo, MU Bozhong, WANG Xiulin, et al. Biodegradation mechanism and affecting factors of petroleum hydrocarbons[J]. Environmental Protection of Chemical Industry, 2001, 21(4): 205-208. | |
29 | ABTAHI Hamid, PARHAMFAR Milad, SAEEDI Reza, et al. Effect of competition between petroleum-degrading bacteria and indigenous compost microorganisms on the efficiency of petroleum sludge bioremediation: field application of mineral-based culture in the composting process[J]. Journal of Environmental Management, 2020, 258: 110013. |
30 | 宋雪英, 宋玉芳, 孙铁珩, 等. 石油污染土壤生物修复中外源微生物的影响[J]. 环境科学学报, 2007, 27(7): 1168-1173. |
SONG Xueying, SONG Yufang, SUN Tieheng, et al. Limited effect of introduced microbial inoculants in the bioremediation of petroleum-contaminated soils[J]. Acta Scientiae Circumstantiae, 2007, 27(7): 1168-1173. | |
31 | GONG Xiaobao. Remediation of weathered petroleum oil-contaminated soil using a combination of biostimulation and modified Fenton oxidation[J]. International Biodeterioration & Biodegradation, 2012, 70: 89-95. |
32 | LU Mang, ZHANG Zhongzhi, QIAO Wei, et al. Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation[J]. Bioresource Technology, 2010, 101(7): 2106-2113. |
33 | 赵淑凤, 刘慧, 赵磊, 等. 不同铁、氮转化功能微生物对Fe(II)化学氧化的响应[J]. 地球科学, 2021, 46(4): 1481-1489. |
ZHAO Shufeng, LIU Hui, ZHAO Lei, et al. Responses of different iron and nitrogen transformation functional microorganisms to Fe(Ⅱ) chemical oxidation[J]. Earth Science, 2021, 46(4): 1481-1489. | |
34 | WANG Qing, SONG Xin, WEI Changlong, et al. In situ remediation of Cr(Ⅵ) contaminated groundwater by ZVI-PRB and the corresponding indigenous microbial community responses: a field-scale study[J]. The Science of the Total Environment, 2022, 805: 150260. |
35 | Sabine FLÖDER, JASCHINSKI Sybill, WELLS Gudrun, et al. Dominance and compensatory growth in phytoplankton communities under salinity stress[J]. Journal of Experimental Marine Biology and Ecology, 2010, 395(1/2): 223-231. |
36 | WU Manli, WU Jialuo, ZHANG Xiaohui, et al. Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil[J]. Chemosphere, 2019, 237: 124456. |
37 | ZHEN Lisha, HU Ting, LV Rui, et al. Succession of microbial communities and synergetic effects during bioremediation of petroleum hydrocarbon-contaminated soil enhanced by chemical oxidation[J]. Journal of Hazardous Materials, 2021, 410: 124869. |
38 | LI Lu, ZHANG Zena, WANG Yuheng, et al. Efficient removal of heavily oil-contaminated soil using a combination of Fenton pre-oxidation with biostimulated iron and bioremediation[J]. Journal of Environmental Management, 2022, 308: 114590. |
[1] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[2] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[3] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[4] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[5] | LIU Baicheng, LI Fayun, ZHAO Qihui, LIN Meixia. Research progress on remediation of polycyclic aromatic hydrocarbons contaminated soil by Gramineae plants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3736-3748. |
[6] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[7] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[8] | WANG Jiuheng, RONG Nai, LIU Kaiwei, HAN Long, SHUI Taotao, WU Yan, MU Zhengyong, LIAO Xuqing, MENG Wenjia. Enhanced CO2 capture performance and strength of cellulose-templated CaO-based pellets with steam reactivation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3217-3225. |
[9] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[10] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[11] | CHEN Shaoqin, HU Ling, LEI Tianya, WANG Rong, SHU Jiancheng, CHEN Mengjun. Mechanical activation for zinc enhanced leaching from zinc calcine [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1649-1658. |
[12] | CHEN Shaoyun, ZHOU Xiantai, JI Hongbing. Preparation of metalloporphyrin/carbon nanotube biomimetic catalysts and its catalytic mechanism in baeyer-villiger oxidation [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1332-1340. |
[13] | CAO Min, MAO Yujiao, WANG Qianqian, LI Sha, YAN Xiaoliang. Sintering mechanism and sintering-resistant strategies for metal-based catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 744-755. |
[14] | LI Naizhen, SUN Ruijie, QIN Zhifeng, MIAO Maoqian, WU Qiongxiao, CHANG Liping, SUN Pengcheng, ZENG Jian, LIU Yi. Effects of constant carbon atmosphere on the activity, selectivity and coking of catalysts in hydrodesulfurization of coke oven gas [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 783-793. |
[15] | SUN Qianqian, LIU Zhen, LI Rui, ZHANG Xi, YANG Mingde, WU Yulong. Low temperature hydrothermal coupling of ferrous ion activated persulfate to improve the dewatering performance of waste activated sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 595-602. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |