Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 5094-5102.DOI: 10.16085/j.issn.1000-6613.2021-2340
• Resources and environmental engineering • Previous Articles Next Articles
GU Xubo1(), LIAO Chuanhua1(
), WANG Changqing2
Received:
2021-11-15
Revised:
2022-02-03
Online:
2022-09-27
Published:
2022-09-25
Contact:
LIAO Chuanhua
通讯作者:
廖传华
作者简介:
顾旭波(1996—),男,硕士研究生,研究方向为超临界水氧化技术。E-mail:Gxbxuexi@163.com。
CLC Number:
GU Xubo, LIAO Chuanhua, WANG Changqing. Design optimization of supercritical water oxidation energy recovery system[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5094-5102.
顾旭波, 廖传华, 王常青. 超临界水氧化能量回收系统的设计优化[J]. 化工进展, 2022, 41(9): 5094-5102.
参数 | 数值 |
---|---|
甲醇溶液流量/kg·h-1 | 360 |
甲醇质量分数/% | 4 |
氧气流量/kg·h-1 | 25.9 |
H1出口温度/℃ | 200 |
H3出口温度/℃ | 410 |
柱塞泵P0出口压力/MPa | 26 |
压缩机P1出口压力/MPa | 26 |
降压阀出口压力/MPa | 0.1 |
参数 | 数值 |
---|---|
甲醇溶液流量/kg·h-1 | 360 |
甲醇质量分数/% | 4 |
氧气流量/kg·h-1 | 25.9 |
H1出口温度/℃ | 200 |
H3出口温度/℃ | 410 |
柱塞泵P0出口压力/MPa | 26 |
压缩机P1出口压力/MPa | 26 |
降压阀出口压力/MPa | 0.1 |
物流 | T/℃ | p/MPa | G/kg·h-1 |
---|---|---|---|
S1 | 25 | 0.1 | 360 |
S2 | 27 | 26 | 360 |
S3 | 200 | 26 | 360 |
S4 | 350 | 26 | 360 |
S5 | 25 | 0.1 | 26 |
S6 | 250 | 26 | 26 |
S7 | 335 | 26 | 386 |
S8 | 410 | 26 | 386 |
S9 | 500 | 26 | 386 |
S10 | 374 | 26 | 386 |
S11 | 75 | 26 | 386 |
S12 | 25 | 0.1 | 2100 |
S13 | 101 | 0.1 | 2100 |
S14 | 70 | 0.1 | 386 |
气体 | 25 | 0.1 | 24 |
液体 | 25 | 0.1 | 362 |
物流 | T/℃ | p/MPa | G/kg·h-1 |
---|---|---|---|
S1 | 25 | 0.1 | 360 |
S2 | 27 | 26 | 360 |
S3 | 200 | 26 | 360 |
S4 | 350 | 26 | 360 |
S5 | 25 | 0.1 | 26 |
S6 | 250 | 26 | 26 |
S7 | 335 | 26 | 386 |
S8 | 410 | 26 | 386 |
S9 | 500 | 26 | 386 |
S10 | 374 | 26 | 386 |
S11 | 75 | 26 | 386 |
S12 | 25 | 0.1 | 2100 |
S13 | 101 | 0.1 | 2100 |
S14 | 70 | 0.1 | 386 |
气体 | 25 | 0.1 | 24 |
液体 | 25 | 0.1 | 362 |
参数 | 数值 |
---|---|
甲醇溶液流量/kg·h-1 | 360 |
甲醇质量分数/% | 4 |
氧气流量/kg·h-1 | 25.9 |
H1出口温度/℃ | 200 |
H3出口温度/℃ | 410 |
柱塞泵P0出口压力/MPa | 26 |
压缩机P1出口压力/MPa | 26 |
柱塞泵P2出口压力/MPa | 2.5 |
透平出口压力/MPa | 5 |
ORC透平出口压力/MPa | 0.25 |
ORC蒸发温度/℃ | 120 |
降压阀出口压力/MPa | 0.1 |
参数 | 数值 |
---|---|
甲醇溶液流量/kg·h-1 | 360 |
甲醇质量分数/% | 4 |
氧气流量/kg·h-1 | 25.9 |
H1出口温度/℃ | 200 |
H3出口温度/℃ | 410 |
柱塞泵P0出口压力/MPa | 26 |
压缩机P1出口压力/MPa | 26 |
柱塞泵P2出口压力/MPa | 2.5 |
透平出口压力/MPa | 5 |
ORC透平出口压力/MPa | 0.25 |
ORC蒸发温度/℃ | 120 |
降压阀出口压力/MPa | 0.1 |
物流 | T/℃ | p /MPa | G/kg·h-1 | 物流 | T/℃ | p/MPa | G/kg·h-1 |
---|---|---|---|---|---|---|---|
S1 | 25 | 0.1 | 360 | S13 | 120 | 2.5 | 695 |
S2 | 27 | 26 | 360 | S14 | 40 | 0.25 | 695 |
S3 | 200 | 26 | 360 | S15 | 35 | 0.25 | 695 |
S4 | 254 | 26 | 360 | S16 | 37 | 2.5 | 695 |
S5 | 25 | 0.1 | 26 | S17 | 25 | 0.1 | 2345 |
S6 | 250 | 26 | 26 | S18 | 101 | 0.1 | 2345 |
S7 | 246 | 26 | 386 | S19 | 75 | 5 | 386 |
S8 | 410 | 26 | 386 | S20 | 70 | 0.1 | 386 |
S9 | 500 | 26 | 386 | Cool | 20 | 0.1 | 115 |
S10 | 439 | 26 | 386 | Hot | 29 | 0.1 | 115 |
S11 | 396 | 26 | 386 | Gas | 25 | 0.1 | 24 |
S12 | 261 | 5 | 386 | liquid | 25 | 0.1 | 362 |
物流 | T/℃ | p /MPa | G/kg·h-1 | 物流 | T/℃ | p/MPa | G/kg·h-1 |
---|---|---|---|---|---|---|---|
S1 | 25 | 0.1 | 360 | S13 | 120 | 2.5 | 695 |
S2 | 27 | 26 | 360 | S14 | 40 | 0.25 | 695 |
S3 | 200 | 26 | 360 | S15 | 35 | 0.25 | 695 |
S4 | 254 | 26 | 360 | S16 | 37 | 2.5 | 695 |
S5 | 25 | 0.1 | 26 | S17 | 25 | 0.1 | 2345 |
S6 | 250 | 26 | 26 | S18 | 101 | 0.1 | 2345 |
S7 | 246 | 26 | 386 | S19 | 75 | 5 | 386 |
S8 | 410 | 26 | 386 | S20 | 70 | 0.1 | 386 |
S9 | 500 | 26 | 386 | Cool | 20 | 0.1 | 115 |
S10 | 439 | 26 | 386 | Hot | 29 | 0.1 | 115 |
S11 | 396 | 26 | 386 | Gas | 25 | 0.1 | 24 |
S12 | 261 | 5 | 386 | liquid | 25 | 0.1 | 362 |
物流 | 能效/% | 㶲效/% |
---|---|---|
P0 | 95 | 88.55 |
P1 | 20.6 | 49.9 |
P2 | 96.4 | 75 |
H1 | 100 | 21.9 |
H2 | 100 | 71.2 |
H3 | 100 | 51.1 |
H4 | 100 | 25.6 |
H5 | 100 | 4.1 |
H6 | 100 | 28.4 |
T1 | 95 | 76.6 |
T2 | 94.9 | 67.3 |
M1 | 100 | 99.8 |
R1 | 55.2 | 72.6 |
总 | 67.2 | 14.3 |
物流 | 能效/% | 㶲效/% |
---|---|---|
P0 | 95 | 88.55 |
P1 | 20.6 | 49.9 |
P2 | 96.4 | 75 |
H1 | 100 | 21.9 |
H2 | 100 | 71.2 |
H3 | 100 | 51.1 |
H4 | 100 | 25.6 |
H5 | 100 | 4.1 |
H6 | 100 | 28.4 |
T1 | 95 | 76.6 |
T2 | 94.9 | 67.3 |
M1 | 100 | 99.8 |
R1 | 55.2 | 72.6 |
总 | 67.2 | 14.3 |
物流 | T/℃ | p/MPa | G/kg·h-1 | 物流 | T/℃ | p/MPa | G/kg·h-1 |
---|---|---|---|---|---|---|---|
S1 | 25 | 0.1 | 360 | S13 | 120 | 2.5 | 5020 |
S2 | 27 | 26 | 360 | S14 | 40 | 0.25 | 5020 |
S3 | 200 | 26 | 360 | S15 | 35 | 0.25 | 5020 |
S4 | 254 | 26 | 360 | S16 | 36 | 2.5 | 5020 |
S5 | 25 | 0.1 | 26 | S17 | 25 | 0.1 | 660 |
S6 | 250 | 26 | 26 | S18 | 101 | 0.1 | 660 |
S7 | 246 | 26 | 386 | S19 | 75 | 5 | 386 |
S8 | 410 | 26 | 386 | S20 | 70 | 0.1 | 386 |
S9 | 500 | 26 | 386 | Cool | 20 | 0.1 | 830 |
S10 | 269 | 5 | 386 | Hot | 29 | 0.1 | 830 |
S11 | 261 | 5 | 386 | Gas | 25 | 0.1 | 24 |
S12 | 200 | 5 | 386 | liquid | 25 | 0.1 | 362 |
物流 | T/℃ | p/MPa | G/kg·h-1 | 物流 | T/℃ | p/MPa | G/kg·h-1 |
---|---|---|---|---|---|---|---|
S1 | 25 | 0.1 | 360 | S13 | 120 | 2.5 | 5020 |
S2 | 27 | 26 | 360 | S14 | 40 | 0.25 | 5020 |
S3 | 200 | 26 | 360 | S15 | 35 | 0.25 | 5020 |
S4 | 254 | 26 | 360 | S16 | 36 | 2.5 | 5020 |
S5 | 25 | 0.1 | 26 | S17 | 25 | 0.1 | 660 |
S6 | 250 | 26 | 26 | S18 | 101 | 0.1 | 660 |
S7 | 246 | 26 | 386 | S19 | 75 | 5 | 386 |
S8 | 410 | 26 | 386 | S20 | 70 | 0.1 | 386 |
S9 | 500 | 26 | 386 | Cool | 20 | 0.1 | 830 |
S10 | 269 | 5 | 386 | Hot | 29 | 0.1 | 830 |
S11 | 261 | 5 | 386 | Gas | 25 | 0.1 | 24 |
S12 | 200 | 5 | 386 | liquid | 25 | 0.1 | 362 |
物流 | 能效/% | 㶲效/% |
---|---|---|
P0 | 95 | 88.55 |
P1 | 20.6 | 49.9 |
P2 | 95.1 | 75 |
H1 | 100 | 21.9 |
H2 | 100 | 91.3 |
H3 | 100 | 51.1 |
H4 | 100 | 35.6 |
H5 | 100 | 4.3 |
H6 | 100 | 40.1 |
T1 | 94.9 | 76.7 |
T2 | 95.2 | 67.5 |
M1 | 100 | 99.8 |
R1 | 55.2 | 72.6 |
总 | 30.7 | 17.3 |
物流 | 能效/% | 㶲效/% |
---|---|---|
P0 | 95 | 88.55 |
P1 | 20.6 | 49.9 |
P2 | 95.1 | 75 |
H1 | 100 | 21.9 |
H2 | 100 | 91.3 |
H3 | 100 | 51.1 |
H4 | 100 | 35.6 |
H5 | 100 | 4.3 |
H6 | 100 | 40.1 |
T1 | 94.9 | 76.7 |
T2 | 95.2 | 67.5 |
M1 | 100 | 99.8 |
R1 | 55.2 | 72.6 |
总 | 30.7 | 17.3 |
1 | 黄克生, 骆家明. 化工合成中高浓度有机废水的处理分析[J]. 化工设计通讯, 2020, 46(8): 224-225. |
HUANG Kesheng, LUO Jiaming. Treatment and analysis of high-concentration organic wastewater in chemical synthesis[J]. Chemical Engineering Design Communications, 2020, 46(8): 224-225. | |
2 | ZHOU Xu, LIAO Chuanhua, WANG Yinfeng, et al. Constructing the Pourbaix diagram of Fe-Cl--H2O ternary system under supercritical water conditions[J]. Electrochimica Acta, 2021, 377: 138075. |
3 | MARRONE P A. Supercritical water oxidation — current status of full-scale commercial activity for waste destruction[J]. The Journal of Supercritical Fluids, 2013, 79: 283-288. |
4 | XU Donghai, HUANG Chuanbao, WANG Shuzhong, et al. Salt deposition problems in supercritical water oxidation[J]. Chemical Engineering Journal, 2015, 279: 1010-1022. |
5 | COCERO M J, ALONSO E, SANZ M T, et al. Supercritical water oxidation process under energetically self-sufficient operation[J]. The Journal of Supercritical Fluids, 2002, 24(1): 37-46. |
6 | GARCÍA-RODRÍGUEZ Y, MATO F A, MARTÍN A, et al. Energy recovery from effluents of supercritical water oxidation reactors[J]. The Journal of Supercritical Fluids, 2015, 104: 1-9. |
7 | DONATINI F, GIGLIUCCI G, RICCARDI J, et al. Supercritical water oxidation of coal in power plants with low CO2 emissions[J]. Energy, 2008, 34(12): 5144-2150. |
8 | CHEN Zhewen, GAO Lin, ZHANG Xiaosong, et al. High-efficiency power generation system with integrated supercritical water gasification of coal[J]. Energy, 2018, 159: 810-816. |
9 | 廖玮, 朱廷风, 廖传华, 等. 超临界水氧化技术在能量转化中的应用[J]. 水处理技术, 2019, 45(3): 14-17. |
LIAO Wei, ZHU Tingfeng, LIAO Chuanhua, et al. Application of supercritical water oxidation technology in energy transformation[J]. Technology of Water Treatment, 2019, 45(3): 14-17. | |
10 | 张凤鸣, 陈守燕, 徐纯燕, 等. 基于蒸发壁反应器的超临界水氧化技术研究进展[J]. 化工进展, 2011, 30(8): 1643-1650. |
ZHANG Fengming, CHEN Shouyan, XU Chunyan, et al. Research progress of supercritical water oxidation based on transpiring wall reactor[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1643-1650. | |
11 | 廖玮, 廖传华, 朱廷风, 等. 超临界水氧化技术在环境治理中的应用[J]. 印染助剂, 2019, 36(8): 6-10. |
LIAO Wei, LIAO Chuanhua, ZHU Tingfeng, et al. Application of supercritical water oxidation technology in environmental governance[J]. Textile Auxiliaries, 2019, 36(8): 6-10. | |
12 | PRÍKOPSKÝ K, WELLIG B, VON ROHR P R. SCWO of salt containing artificial wastewater using a transpiring-wall reactor: experimental results[J]. The Journal of Supercritical Fluids, 2007, 40(2): 246-257. |
13 | 袁誉坤, 尹宇发宁, 舒睿, 等. 超临界水氧化处理核电厂去油污溶剂及反应动力学分析[J]. 核化学与放射化学, 2020, 42(3): 192-197. |
YUAN Yukun, YIN Yufaning, SHU Rui, et al. Treatment and reaction kinetic analysis of waste solvent from nuclear power plants by supercritical water oxidation[J]. Journal of Nuclear and Radiochemistry, 2020, 42(3): 192-197. | |
14 | 陈海峰, 陈久林. 蒸发壁式超临界水氧化能量回收的模拟研究[J]. 陕西科技大学学报, 2018, 36(6): 154-162. |
CHEN Haifeng, CHEN Jiulin. Simulation and optimization on energy recovery of the transpiring-wall supercritical water oxidation[J]. Journal of Shaanxi University of Science & Technology, 2018, 36(6): 154-162. | |
15 | LIAO Wei, ZHAO Qingwan, CHEN Houjiang, et al. Experimental investigation and simulation optimization of a pilot-scale supercritical water oxidation system[J]. Energy Conversion and Management, 2019, 199: 111965. |
16 | BERMEJO M D, BIELSA I, COCERO M J. Experimental and theoretical study of the influence of pressure on SCWO[J]. AIChE Journal, 2006, 52(11): 3958-3966. |
17 | BROCK E E, SAVAGE P E. Detailed chemical kinetics model for supercritical water oxidation of C1 compounds and H2 [J]. AIChE Journal, 1995, 41(8): 1874-1888. |
18 | ÖZTÜRK M, ÖZEK N, YÜKSEL Y E. Gasification of various types of tertiary coals: a sustainability approach[J]. Energy Conversion and Management, 2012, 56: 157-165. |
19 | BERMEJO M D, COCERO M J, FERNÁNDEZ-POLANCO F. A process for generating power from the oxidation of coal in supercritical water[J]. Fuel, 2004, 83(2): 195-204. |
20 | 国家市场监督管理总局, 国家标准化管理委员会. 能量系统㶲分析技术导则: [S]. 北京: 中国标准出版社, 2021. |
State Administration of Market Regulation, Standardization Administration of the People’s Republic of China. Technical guidelines for exergy analysis in energy systems: [S]. Beijing: Standards Press of China, 2021. | |
21 | AHMADI M H, MEHRPOOYA M, POURFAYAZ F. Exergoeconomic analysis and multi objective optimization of performance of a carbon dioxide power cycle driven by geothermal energy with liquefied natural gas as its heat sink[J]. Energy Conversion and Management, 2016, 119: 422-434. |
[1] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[2] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[3] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[4] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[5] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[6] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[7] | YANG Zhiqiang, ZENG Jijun, MA Yiding, YU Tao, ZHAO Bo, LIU Yingzhe, ZHANG Wei, LYU Jian, LI Xingwen, ZHANG Boya, TANG Nian, LI Li, SUN Dongwei. Research status and future trend of sulfur hexafluoride alternatives [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4093-4107. |
[8] | GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229. |
[9] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[10] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[11] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[12] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[13] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[14] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
[15] | LIU Hongru, LIN Wensheng. Energy efficiency and carbon emission analysis of hydrogen transport chains based on liquid hydrogen and ammonia [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1291-1298. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 265
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |