Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2705-2715.DOI: 10.16085/j.issn.1000-6613.2024-1954
• Renewable energy utilization • Previous Articles
ZHU Junying(
), RONG Junfeng, ZONG Baoning(
)
Received:2024-11-27
Revised:2025-04-12
Online:2025-05-20
Published:2025-05-25
Contact:
ZONG Baoning
通讯作者:
宗保宁
作者简介:朱俊英(1981—),女,博士,研究方向为微藻生物技术。E-mail:zhujy.ripp@sinopec.com。
基金资助:CLC Number:
ZHU Junying, RONG Junfeng, ZONG Baoning. Feasibility analysis of Spirulina carbon sequestration while producing of bulk feed protein[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2705-2715.
朱俊英, 荣峻峰, 宗保宁. 螺旋藻固碳和作为饲用蛋白原料可行性分析[J]. 化工进展, 2025, 44(5): 2705-2715.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1954
| 项目 | 成本/104CNY·t-1 | 所占比例/% |
|---|---|---|
| 合计 | 1.80 | 100 |
| 原料 | 0.62 | 34.44 |
| 能耗 | 0.10 | 5.56 |
| 设备折旧 | 0.27 | 15.00 |
| 人工 | 0.75 | 41.67 |
| 土地 | 0.06 | 3.33 |
| 项目 | 成本/104CNY·t-1 | 所占比例/% |
|---|---|---|
| 合计 | 1.80 | 100 |
| 原料 | 0.62 | 34.44 |
| 能耗 | 0.10 | 5.56 |
| 设备折旧 | 0.27 | 15.00 |
| 人工 | 0.75 | 41.67 |
| 土地 | 0.06 | 3.33 |
| 光生物反应器 | 成本降低/USD·kg-1 | 降本措施 | 参考文献 |
|---|---|---|---|
| 跑道池 | 1.86→1.16 | 提高藻细胞生长速率和延长生产时间 | [ |
| 1.16→0.70 | 营养盐成本降为零,再加上废水处理收益 | ||
| 0.70→0.23 | 利用烟气CO2,CO2成本降为零 | ||
| 0.23→0.08 | 碳税收益34.8USD/t CO2 | ||
| 管式反应器 | 80.04→14.62 | 产量由3.8t/a提高到200t/a | [ |
| 14.62→3.71 | 将封闭式反应器成本降低到跑道池的水平 | ||
| 3.71→2.90 | CO2成本降为零 | ||
| 2.90→2.44 | 人工成本降至最低 | ||
| 板式反应器 | 9.16→4.64 | 生产规模由1ha增加到100ha | [ |
| 4.64→0.46 | 通过提高生产效率、降低营养盐成本、CO2成本降为零等降低生产成本 |
| 光生物反应器 | 成本降低/USD·kg-1 | 降本措施 | 参考文献 |
|---|---|---|---|
| 跑道池 | 1.86→1.16 | 提高藻细胞生长速率和延长生产时间 | [ |
| 1.16→0.70 | 营养盐成本降为零,再加上废水处理收益 | ||
| 0.70→0.23 | 利用烟气CO2,CO2成本降为零 | ||
| 0.23→0.08 | 碳税收益34.8USD/t CO2 | ||
| 管式反应器 | 80.04→14.62 | 产量由3.8t/a提高到200t/a | [ |
| 14.62→3.71 | 将封闭式反应器成本降低到跑道池的水平 | ||
| 3.71→2.90 | CO2成本降为零 | ||
| 2.90→2.44 | 人工成本降至最低 | ||
| 板式反应器 | 9.16→4.64 | 生产规模由1ha增加到100ha | [ |
| 4.64→0.46 | 通过提高生产效率、降低营养盐成本、CO2成本降为零等降低生产成本 |
| 光生物反应器 | 养殖体积/L | CO2最大利用率/% |
|---|---|---|
| 开放式跑道池 | 23 | 33 |
| 封闭式跑道池 | 12 | 56 |
| 柱式反应器 | 1 | 25~50 |
| 管式反应器 | 1.3 | 6.12~66.39 |
| 板式反应器 | 8 | 35.0~53.8 |
| 光生物反应器 | 养殖体积/L | CO2最大利用率/% |
|---|---|---|
| 开放式跑道池 | 23 | 33 |
| 封闭式跑道池 | 12 | 56 |
| 柱式反应器 | 1 | 25~50 |
| 管式反应器 | 1.3 | 6.12~66.39 |
| 板式反应器 | 8 | 35.0~53.8 |
| 1 | International Energy Agency (IEA). CO2 Emissions in 2023[R]. Paris: IEA, 2023. |
| 2 | 侯水生. 建议优先发展高质量家禽产业[J]. 中国经济报告, 2024(2): 50-51. |
| HOU Shuisheng. Recommendation to prioritize the development of a high-quality poultry industry[J]. China Policy Review, 2024(2): 50-51. | |
| 3 | ZHU Junying, GUO Baowen, Fengxiang QIE, et al. A sustainable integration of removing CO2/NO x and producing biomass with high content of lipid/protein by microalgae[J]. Journal of Energy Chemistry, 2022, 73: 13-25. |
| 4 | SELVENDRAN D. Large Scale Algal Biomass (Spirulina) Production in India[M]. Springer International Publishing, Algal Biorefinery: An Integrated Approach, Chapter 7, 2015: 151-167. |
| 5 | 商晓宇, 刘玉华, 柳晓峰. 产业发展稳定向好监管新政密集推出——2023年山东饲料产业形势分析[J]. 中国饲料, 2024(5): 1-5. |
| SHANG Xiaoyu, LIU Yuhua, LIU Xiaofeng. Analysis of Shandong feed industry situation in 2023[J]. China Feed, 2024(5): 1-5. | |
| 6 | 许洪高, 周琪乐, 鲁绯, 等. 螺旋藻养殖加工和安全性研究进展[J]. 江苏农业科学, 2021, 49(6): 10-19. |
| XU Honggao, ZHOU Qile, LU Fei, et al. Research progress of cultivation, processing and safety of Spirulina [J]. Jiangsu Agricultural Sciences, 2021, 49(6): 10-19. | |
| 7 | 龚洋洋, 黄艳青, 陆建学, 等. 螺旋藻粉在水产饲料中的应用研究进展[J]. 海洋渔业, 2018, 40(4): 504-512. |
| GONG Yangyang, HUANG Yanqing, LU Jianxue, et al. Progress of Spirulina meal utilization in aquafeeds[J]. Marine Fisheries, 2018, 40(4): 504-512. | |
| 8 | 杨子寒. 大规模培养下螺旋藻生长生理特性与品质研究——以鄂尔多斯螺旋藻产业园为例[D]. 武汉: 中国科学院大学, 2021. |
| YANG Zihan. Study on growth, physiology, and quality of Spirulina under large-scale cultivation—A case study in Ordos Spirulina Industrial Park[D]. Wuhan: University of Chinese Academy of Sciences, 2021. | |
| 9 | ALAGAWANY Mahmoud, TAHA Ayman E, NORELDIN Ahmed, et al. Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review[J]. Aquaculture, 2021, 542: 736841. |
| 10 | 高风正, 秦松, 葛保胜. 中国与欧洲微藻产业概况及生物质精准应用[J]. 海洋科学, 2022, 46(9): 146-158. |
| GAO Fengzheng, QIN Song, GE Baosheng. Microalgal industry and biomass application in China and Europe: A review[J]. Marine Sciences, 2022, 46(9): 146-158. | |
| 11 | Joaquin MACIAS-SANCHO, POERSCH Luís Henrique, BAUER William, et al. Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: Effects on growth and immunological parameters[J]. Aquaculture, 2014, 426: 120-125. |
| 12 | CHEN Weixian, ZHANG Shanshan, RONG Junfeng, et al. Effective biological DeNO x of industrial flue gas by the mixotrophic cultivation of an oil-producing green alga Chlorella sp. C2[J]. Environmental Science & Technology, 2016, 50(3): 1620-1627. |
| 13 | 王志忠. 鄂尔多斯高原碱湖钝顶螺旋藻生产加工关键因子研究[D]. 呼和浩特: 内蒙古农业大学, 2015. |
| WANG Zhizhong. Study on key factors of production and processing for Spirulina platensis from the alkali lake in Ordos Plateau [D]. Hohhot: Inner Mongolia Agricultural University, 2015. | |
| 14 | CHEN Chun-Yen, Peichun KAO, TAN Chung Hong, et al. Using an innovative pH-stat CO2 feeding strategy to enhance cell growth and C-phycocyanin production from Spirulina platensis [J]. Biochemical Engineering Journal, 2016, 112: 78-85. |
| 15 | CUI Huijun, YANG Zihan, LU Zhe, et al. Combination of utilization of CO2 from flue gas of biomass power plant and medium recycling to enhance cost-effective Spirulina production[J]. Journal of Applied Phycology, 2019, 31(4): 2175-2185. |
| 16 | GROBBELAAR Johan U. Algal Nutrition: Mineral Nutrition[M]. Blackwell Publishing Ltd., Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 2004: 95-115. |
| 17 | 李斌, 欧林坚, 吕颂辉. 不同氮源对海洋卡盾藻生长和硝酸还原酶活性的影响[J]. 海洋环境科学, 2009, 28(3): 264-267. |
| LI Bin, Linjian OU, Songhui LYU. Effects of different kinds of nitrogen on growth and nitrate reductase activity of Chattonella marina (Raphidophyceae)[J]. Marine Environmental Science, 2009, 28(3): 264-267. | |
| 18 | 丁彦聪, 高群, 刘家尧, 等. 环境因子对小球藻生长的影响及高产油培养条件的优化[J]. 生态学报, 2011, 31(18): 5307-5315. |
| DING Yancong, GAO Qun, LIU Jiayao, et al. Effect of environmental factors on growth of Chlorella sp. and optimization of culture conditions for high oil production[J]. Acta Ecologica Sinica, 2011, 31(18): 5307-5315. | |
| 19 | CHEN Meng, TANG Haiying, MA Hongzhi, et al. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta[J]. Bioresource Technology, 2011, 102(2): 1649-1655. |
| 20 | 沙珍霞, 石晓勇, 张学成, 等. 钝顶螺旋藻营养生理的研究Ⅱ.钝顶螺旋藻对无机氮的吸收利用[J]. 海洋水产研究, 2000, 21(3): 17-22. |
| SHA Zhenxia, SHI Xiaoyong, ZHANG Xuecheng, et al. The study on nutritional physiology of Spirulina platensis Ⅱ: The uptake and usage of inorganic nitrogen[J]. Marine Fisherries Reseach, 2000, 21(3): 17-22. | |
| 21 | ZHU Junying, RONG Junfeng, ZONG Baoning. Factors in mass cultivation of microalgae for biodiesel[J]. Chinese Journal of Catalysis, 2013, 34(1): 80-100. |
| 22 | BROWN N, SHILTON A. Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: Current understanding and future direction[J]. Reviews in Environmental Science and Biotechnology, 2014, 13(3): 321-328. |
| 23 | DEPRAETERE Orily, PIERRE Guillaume, NOPPE Wim, et al. Influence of culture medium recycling on the performance of Arthrospira platensis cultures[J]. Algal Research, 2015, 10: 48-54. |
| 24 | IJAOLA Ahmed Olanrewaju, AKAMO Damilola O, GEORGE Toyosi Timilehin, et al. Algae as a potential source of protein: A review on cultivation, harvesting, extraction, and applications[J]. Algal Research, 2024, 77: 103329. |
| 25 | VAN BEILEN Jan B. Why microalgal biofuels won’t save the internal combustion machine[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(1): 41-52. |
| 26 | 任昱灿. 鲜活螺旋藻超高压杀菌工艺及其保藏方法的研究[D]. 北京: 北京林业大学, 2020. |
| REN Yucan. The UHP sterilization technology and preservation method of Spirulina [D]. Beijing: Beijing Forestry University, 2020. | |
| 27 | SONI Ruma Arora, SUDHAKAR K, RANA R S. Spirulina—From growth to nutritional product: A review[J]. Trends in Food Science & Technology, 2017, 69: 157-171. |
| 28 | 禹绍周, 林慧纯, 张书迪, 等. 鲜活螺旋藻臭氧杀菌效果研究[J]. 安徽农业科学, 2019, 47(13): 155-157. |
| YU Shaozhou, LIN Huichun, ZHANG Shudi, et al. Research on ozone sterilization effect of fresh Spirulina [J]. Journal of Anhui Agricultural Sciences, 2019, 47(13): 155-157. | |
| 29 | KAMKENG Ariane D N, WANG Meihong, HU Jun, et al. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects[J]. Chemical Engineering Journal, 2021, 409: 128138. |
| 30 | ACIÉN F G, FERNÁNDEZ J M, MAGÁN J J, et al. Production cost of a real microalgae production plant and strategies to reduce it[J]. Biotechnology Advances, 2012, 30(6): 1344-1353. |
| 31 | 李馨. 鄂尔多斯螺旋藻“健康” 全世界[J]. 中国检验检疫, 2017(7): 72-73. |
| LI Xin. Spirulina Ordos is “healthy” all over the world[J]. China Inspection and Quarantine, 2017(7): 72-73. | |
| 32 | WIJFFELS Rene H, BARBOSA Maria J, EPPINK Michel H M. Microalgae for the production of bulk chemicals and biofuels[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(3): 287-295. |
| 33 | LLAMAS Bernardo, SUÁREZ-RODRÍGUEZ María C, GONZÁLEZ-LÓPEZ Cynthia V, et al. Techno-economic analysis of microalgae related processes for CO2 bio-fixation[J]. Algal Research, 2021, 57: 102339. |
| 34 | SILVEIRA Jéssica Teixeira DA, DA ROSA Ana Priscila Centeno, COSTA Jorge Alberto Vieira. Modulating phytohormone supplementation can efficiently increase biomass and lipid production in Spirulina (Arthrospira)[J]. BioEnergy Research, 2022, 15(1): 112-120. |
| 35 | SILVEIRA Jéssica Teixeira DA, DA ROSA Ana Priscila Centeno, DE MORAIS Michele Greque, et al. Cost reduction in the production of Spirulina biomass and biomolecules from indole-3-acetic acid supplementation in different growth phases[J]. Applied Biochemistry and Biotechnology, 2023, 195(5): 2882-2892. |
| 36 | MORAIS M G, RADMANN E M, ANDRADE M R, et al. Pilot scale semicontinuous production of Spirulina biomass in southern Brazil[J]. Aquaculture, 2009, 294(1/2): 60-64. |
| 37 | DEL RIO-CHANONA Ehecatl Antonio, ZHANG Dongda, XIE Youping, et al. Dynamic simulation and optimization for Arthrospira platensis growth and C-phycocyanin production[J]. Industrial & Engineering Chemistry Research, 2015, 54(43): 10606-10614. |
| 38 | BHARATHIRAJA B, CHAKRAVARTHY M, RANJITH KUMAR R, et al. Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 634-653. |
| 39 | KIM Ga-Yeong, Jina HEO, KIM Hee-Sik, et al. Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency[J]. Bioresource Technology, 2017, 237: 72-77. |
| 40 | BEIGBEDER Jean-Baptiste, SANGLIER Malo, DE MEDEIROS DANTAS Julia Maria, et al. CO2 capture and inorganic carbon assimilation of gaseous fermentation effluents using Parachlorella kessleri microalgae[J]. Journal of CO2 Utilization, 2021, 50: 101581. |
| 41 | ZHU Junying, GUO Baowen, LI Xu, et al. Biological DeNO x by Chlorella sp. C2 through HNO3 as an intermediate between microalga cultivation and NO x removal[J]. Energy & Fuels, 2023, 37(23): 18977-18985. |
| 42 | BALAJI Sundaramoorthy, KALAIVANI Thiagarajan, RAJASEKARAN Chandrasekaran, et al. Bioremediation potential of Arthrospira platensis (Spirulina) against chromium(Ⅵ)[J]. Clean Soil, Air, Water, 2015, 43(7): 1018-1024. |
| 43 | AL-HOMAIDAN Ali A, AL-HOURI Hadeel J, AL-HAZZANI Amal A, et al. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass[J]. Arabian Journal of Chemistry, 2014, 7(1): 57-62. |
| 44 | MALAKOOTIAN Mahsa, LIMONI Zahra Khodashenas, MALAKOOTIAN Mohammad. The efficiency of lead biosorption from industrial wastewater by microalga Spirulina platensis [J]. International Journal Environmental Research, 2016, 10: 357-366. |
| 45 | 刘小京, 郭凯, 封晓辉, 等. 农业高效利用盐碱地资源探讨[J]. 中国生态农业学报(中英文), 2023, 31(3): 345-353. |
| LIU Xiaojing, GUO Kai, FENG Xiaohui, et al. Discussion on the agricultural efficient utilization of saline-alkali land resources[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 345-353. | |
| 46 | SILVEIRA S T, BURKERT J F M, COSTA J A V, et al. Optimization of phycocyanin extraction from Spirulina platensis using factorial design[J]. Bioresource Technology, 2007, 98(8): 1629-1634. |
| 47 | 于晓蕾. 钝顶螺旋藻藻蓝蛋白提取与纯化的研究[D]. 镇江: 江苏大学, 2023. |
| YU Xiaolei. Study on extraction and purification of phycocyanin from Spirulina Platensis [D]. Zhenjiang: Jiangsu University, 2023. | |
| 48 | 张燕鹏. 食品工业废水培养钝顶螺旋藻过程中的污染物去除和藻蓝蛋白生产[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
| ZHANG Yanpeng. Pollutant removal and phycocyanin production in the cultivation of Spirulina Platensis by food industry wastewater[D]. Harbin: Harbin Institute of Technology, 2020. | |
| 49 | SILVA Lorena A, KUHN Kátia R, MORAES Caroline C, et al. Experimental design as a tool for optimization of C-phycocyanin purification by precipitation from Spirulina platensis [J]. Journal of the Brazilian Chemical Society, 2009, 20(1): 5-12. |
| 50 | CISNEROS M, Marco RITO-PALOMARES. A simplified strategy for the release and primary recovery of C-phycocyanin produced by Spirulina maxima [J]. Chemical and Biochemical Engineering Quarterly, 2004, 18(4): 385-390. |
| 51 | SASSANO Carlos Eduardo Nascimento, GIOIELLI Luiz Antonio, CONVERTI Attilio, et al. Urea increases fed-batch growth and γ-linolenic acid production of nutritionally valuable Arthrospira (Spirulina) platensis cyanobacterium[J]. Engineering in Life Sciences, 2014, 14(5): 530-537. |
| 52 | GUIL-GUERRERO J L, BELARBI E H, REBOLLOSO-FUENTES M M. Eicosapentaenoic and arachidonic acids purification from the red microalga Porphyridium cruentum [J]. Bioseparation, 2000, 9(5): 299-306. |
| 53 | CHETHANA S, NAYAK Chetan A, MADHUSUDHAN M C, et al. Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis [J]. Journal of Food Science and Technology, 2015, 52(4): 2415-2421. |
| 54 | 袁森. 螺旋藻藻渣综合利用的研究[D]. 北京: 北京林业大学, 2021. |
| YUAN Sen. Study on comprehensive utilization of Spirulina algae residue[D]. Beijing: Beijing Forestry University, 2021. |
| [1] | JIANG Qiyi, DENG Xinyue, YUAN Yanting, ZHANG Yaqian, YANG Min, LI Weina, FAN Daidi. Advances in engineering design, optimization and application of targeted therapeutic proteins and peptides [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2407-2420. |
| [2] | WU Mengqin, WANG Jiayao, XU Youqiang, WANG Yu. Progress in cascade conversion of CO2 to single cell protein through chemical and biological catalysis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2429-2440. |
| [3] | WANG Yuanyuan, ZHANG Chong, HAN Shuangyan, XING Xinhui. Research progress on bioproduction of recombinant proteins by Pichia pastoris utilizing methanol [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2441-2450. |
| [4] | LI Qingsi, ZHANG Liming, ZHANG Lei. Research progress on anti-icing coatings and anti-icing application prospects of antifreeze proteins [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2505-2514. |
| [5] | WANG Jiaqi, LIU Jiaxing, WEI Haoqi, ZHOU Xinlin, CHENG Chuanxiao, GE Kun. Rhamnolipid-enhanced CO2 hydrate production [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1998-2007. |
| [6] | WANG Wen, JIN Yang, LI Jun, CHEN Jianjun, CHEN Ming, MENG Xin. Preparation of superhydrophobic PVDF membrane via in-situ FeOOH growth for CO2 absorption [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1570-1577. |
| [7] | LIU Jiangtao, PENG Chong, ZHANG Yongchun. Low-carbon olefins from CO2 hydrogenation over Zn-modulated Fe-based catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1396-1405. |
| [8] | XIE Xinyao, WAN Fen, FU Xuanyu, FAN Yuting, CHEN Lingxiu, LI Peng. Catalytic performance and mechanism of CO2 electroreduction of Cu-Ag nanoclusters [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1387-1395. |
| [9] | YANG Fan, ZHAO Yitao, ZHU Xuedong, WANG Darui. Application of ternary spinel and twined ZSM-5 zeolite in methylation of benzene with carbon dioxide [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 856-866. |
| [10] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
| [11] | LIAO Xu, WANG Wei, HUANG Wenting, XIONG Wentao, WANG Zeyu, QIN Zuodong, LIN Jinqing. Research progress in biomass-based catalysts in the conversion of carbon dioxide into cyclic carbonates [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 834-846. |
| [12] | WANG Shixin, YAN Feng, LIU Xiaoli, SONG Guangchun, LI Yuxing, HU Qihui. Review of carbon dioxide pipeline transportation technology under the background of “dual carbon” [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 17-26. |
| [13] | YU Mengjie, WU Yutong, LUO Faxiang, DOU Yibo. Research progress on structural design of photocatalysts for diluted carbon dioxide reduction [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 335-350. |
| [14] | CHEN Gaoxiang, WANG Rongchang, JIANG Jiacheng. Mechanism of cathodic electron transfer and hydrogen–mediated enhanced measures in microbial electrosynthesis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 504-516. |
| [15] | WANG Bowei, ZHENG Mingzhen, WANG Lemeng, FU Dong, WANG Shan, ZHU Shengjun, ZHAO Kun, ZHANG Pan. Preparation of NaOH for CO2 capture by electrolysis of Na2SO4 [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 604-614. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |