Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 834-846.DOI: 10.16085/j.issn.1000-6613.2024-0265
• Industrial catalysis • Previous Articles Next Articles
LIAO Xu1(), WANG Wei1, HUANG Wenting1, XIONG Wentao2, WANG Zeyu2, QIN Zuodong1(
), LIN Jinqing2(
)
Received:
2024-02-04
Revised:
2024-05-15
Online:
2025-03-10
Published:
2025-02-25
Contact:
QIN Zuodong, LIN Jinqing
廖旭1(), 王玮1, 黄文婷1, 熊文涛2, 王泽宇2, 覃佐东1(
), 林金清2(
)
通讯作者:
覃佐东,林金清
作者简介:
廖旭(1995—),男,博士,讲师,研究方向为二氧化碳的催化转化。E-mail:liaoxuhuse@126.com。
基金资助:
CLC Number:
LIAO Xu, WANG Wei, HUANG Wenting, XIONG Wentao, WANG Zeyu, QIN Zuodong, LIN Jinqing. Research progress in biomass-based catalysts in the conversion of carbon dioxide into cyclic carbonates[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 834-846.
廖旭, 王玮, 黄文婷, 熊文涛, 王泽宇, 覃佐东, 林金清. 生物质基催化剂在二氧化碳转化为环状碳酸酯中的研究进展[J]. 化工进展, 2025, 44(2): 834-846.
催化剂 | 环氧化合物 | 助催化剂 | 温度/℃ | 压力/MPa | 反应时间/h | 产率/% | 循环性能 | 参考文献 |
---|---|---|---|---|---|---|---|---|
cellulose | PO | KI | 110 | 2 | 2 | 98 | — | [ |
CMIL-4-I | PO | — | 110 | 1.8 | 2 | >98 | 5/71% | [ |
mQC-1.I | PO | — | 120(微波加热 | 1.2 | 3 | 97 | 6/91% | [ |
POF-[Cellmim][Br] | PO | — | 120 | 2 | 4 | 97 | 5/91% | [ |
CNC-Co(Ⅲ)Salen | PO | TBAB | 25 | 0.1 | 24 | >99 | 4/92% | [ |
CNF-(Salen)Cr(Ⅲ) | ECH | TBAB | 90 | 1.5 | 3 | 98 | 6/90% | [ |
cellulose@DFNS-CoMn2O4 | PO | — | 100 | 20 | 2 | 76(聚碳酸酯) | 10 | [ |
CS-EMImBr | PO | — | 120 | 2 | 4 | 98 | 5 | [ |
CS-[BuPh3P]Br | PO | — | 120 | 2.5 | 4 | 96 | 5 | [ |
QCHT | PO | — | 120 | 1.17 | 6 | 86 | 5 | [ |
QMMI | PO | — | 120(微波加热 | 1.17 | 6 | 89 | 4/73% | [ |
IL-CS-8 | ECH | — | 105 | 气球 | 24 | 99 | 4 | [ |
COFIL@chitosan | SO | — | 80 | 0.1 | 72 | 91 | 5/89% | [ |
CuPc@CS | ECH | TBAB | 80 | 0.1 | 4.5 | 95 | 5 | [ |
MOH-Zn | PO | TBAB | 30 | 0.1 | 24 | 95 | — | [ |
Co@N-HPC-40 | ECH | TBAB | 80 | 0.15 | 48 | 93 | — | [ |
Cal-CS-300 | ECH | TBAB | 光照 | 0.1 | 6 | 88 | 5 | [ |
lignin | PO | TBAI | 70 | 1 | 10 | 95 | 5 | [ |
Lignin-ChCl-PABA | ECH | TBAB | 120 | 1 | 3 | 98 | 5/84% | [ |
SalRu | PO | — | 120 | 2 | 8 | 96 | 5 | [ |
P-(L-FeTPP) | PO | TBAB | 70 | 1 | 12 | 100 | 6 | [ |
β-CD | ECH | KI | 120 | 6 | 8 | 93 | 5 | [ |
β-CD | ECH | TBAB | 130 | 3 | 5 | 98 | 4 | [ |
[DBUH][PFPhO]/b-CD | ECH | — | 130 | 3 | 10 | 99 | 4 | [ |
bis-β-CD(1b) | PO | — | 110 | 2 | 24 | 100 | 5 | [ |
SCB | PO | KI | 120 | 2 | 6 | 92 | 5 | [ |
LS-DIL-G3 | ECH | TBAB | 90 | 1 | 5 | 99 | 6/79% | [ |
催化剂 | 环氧化合物 | 助催化剂 | 温度/℃ | 压力/MPa | 反应时间/h | 产率/% | 循环性能 | 参考文献 |
---|---|---|---|---|---|---|---|---|
cellulose | PO | KI | 110 | 2 | 2 | 98 | — | [ |
CMIL-4-I | PO | — | 110 | 1.8 | 2 | >98 | 5/71% | [ |
mQC-1.I | PO | — | 120(微波加热 | 1.2 | 3 | 97 | 6/91% | [ |
POF-[Cellmim][Br] | PO | — | 120 | 2 | 4 | 97 | 5/91% | [ |
CNC-Co(Ⅲ)Salen | PO | TBAB | 25 | 0.1 | 24 | >99 | 4/92% | [ |
CNF-(Salen)Cr(Ⅲ) | ECH | TBAB | 90 | 1.5 | 3 | 98 | 6/90% | [ |
cellulose@DFNS-CoMn2O4 | PO | — | 100 | 20 | 2 | 76(聚碳酸酯) | 10 | [ |
CS-EMImBr | PO | — | 120 | 2 | 4 | 98 | 5 | [ |
CS-[BuPh3P]Br | PO | — | 120 | 2.5 | 4 | 96 | 5 | [ |
QCHT | PO | — | 120 | 1.17 | 6 | 86 | 5 | [ |
QMMI | PO | — | 120(微波加热 | 1.17 | 6 | 89 | 4/73% | [ |
IL-CS-8 | ECH | — | 105 | 气球 | 24 | 99 | 4 | [ |
COFIL@chitosan | SO | — | 80 | 0.1 | 72 | 91 | 5/89% | [ |
CuPc@CS | ECH | TBAB | 80 | 0.1 | 4.5 | 95 | 5 | [ |
MOH-Zn | PO | TBAB | 30 | 0.1 | 24 | 95 | — | [ |
Co@N-HPC-40 | ECH | TBAB | 80 | 0.15 | 48 | 93 | — | [ |
Cal-CS-300 | ECH | TBAB | 光照 | 0.1 | 6 | 88 | 5 | [ |
lignin | PO | TBAI | 70 | 1 | 10 | 95 | 5 | [ |
Lignin-ChCl-PABA | ECH | TBAB | 120 | 1 | 3 | 98 | 5/84% | [ |
SalRu | PO | — | 120 | 2 | 8 | 96 | 5 | [ |
P-(L-FeTPP) | PO | TBAB | 70 | 1 | 12 | 100 | 6 | [ |
β-CD | ECH | KI | 120 | 6 | 8 | 93 | 5 | [ |
β-CD | ECH | TBAB | 130 | 3 | 5 | 98 | 4 | [ |
[DBUH][PFPhO]/b-CD | ECH | — | 130 | 3 | 10 | 99 | 4 | [ |
bis-β-CD(1b) | PO | — | 110 | 2 | 24 | 100 | 5 | [ |
SCB | PO | KI | 120 | 2 | 6 | 92 | 5 | [ |
LS-DIL-G3 | ECH | TBAB | 90 | 1 | 5 | 99 | 6/79% | [ |
1 | CLAVER Carmen, YEAMIN Md Bin, REGUERO Mar, et al. Recent advances in the use of catalysts based on natural products for the conversion of CO2 into cyclic carbonates[J]. Green Chemistry, 2020, 22(22): 7665-7706. |
2 | ZHAO Jun, JIANG Qingzhe, DONG Xiucheng, et al. How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China[J]. Energy Economics, 2022, 105: 105704. |
3 | MORA Camilo, SPIRANDELLI Daniele, FRANKLIN Erik C, et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions[J]. Nature Climate Change, 2018, 8: 1062-1071. |
4 | VELTY Alexandra, CORMA Avelino. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO2 to chemicals and fuels[J]. Chemical Society Reviews, 2023, 52(5): 1773-1946. |
5 | GULATI Shikha, VIJAYAN Sneha, MANSI, et al. Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals[J]. Coordination Chemistry Reviews, 2023, 474: 214853. |
6 | ZHANG Wenwen, PING Ran, LU Xueyu, et al. Rational design of Lewis acid-base bifunctional nanopolymers with high performance on CO2/epoxide cycloaddition without a cocatalyst[J]. Chemical Engineering Journal, 2023, 451: 138715. |
7 | YU Wei, MAYNARD Edward, CHIARADIA Viviane, et al. Aliphatic polycarbonates from cyclic carbonate monomers and their application as biomaterials[J]. Chemical Reviews, 2021, 121(18): 10865-10907. |
8 | LI Guoqing, DONG Shu, FU Ping, et al. Synthesis of porous poly(ionic liquid)s for chemical CO2 fixation with epoxides[J]. Green Chemistry, 2022, 24(9): 3433-3460. |
9 | WANG Yang, WANG Kangzhou, ZHANG Baizhang, et al. Direct conversion of CO2 to ethanol boosted by intimacy-sensitive multifunctional catalysts[J]. ACS Catalysis, 2021, 11(18): 11742-11753. |
10 | ROSSINI Frederick D, JESSUP Ralph S. Heat and free energy of formation of carbon dioxide, and of the transition between graphite and diamond[J]. Journal of Research of the National Bureau of Standards, 1938, 21(4): 491. |
11 | MA Jun, LIU Jinli, ZHANG Zhaofu, et al. The catalytic mechanism of KI and the co-catalytic mechanism of hydroxyl substances for cycloaddition of CO2 with propylene oxide[J]. Green Chemistry, 2012, 14(9): 2410-2420. |
12 | THARUN Jose, MATHAI George, KATHALIKKATTIL Amal Cherian, et al. Microwave-assisted synthesis of cyclic carbonates by a formic acid/KI catalytic system[J]. Green Chemistry, 2013, 15(6): 1673-1677. |
13 | QIN Yusheng, GUO Hongchen, SHENG Xingfeng, et al. An aluminum porphyrin complex with high activity and selectivity for cyclic carbonate synthesis[J]. Green Chemistry, 2015, 17(5): 2853-2858. |
14 | DENG Yiqiang, LIU Ying, CHEN Yaju, et al. Carbon neutral via catalytic transformation of CO2 into cyclic carbonates by an imidazolium-based ionic zeolitic imidazolate frameworks[J]. Applied Surface Science, 2023, 614: 156250. |
15 | GU Yunjang, ANJALI Bai Amutha, YOON Sunghyun, et al. Defect-engineered MOF-801 for cycloaddition of CO2 with epoxides[J]. Journal of Materials Chemistry A, 2022, 10(18): 10051-10061. |
16 | YAMAGUCHI Kazuya, EBITANI Kohki, YOSHIDA Tomoko, et al. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides[J]. Journal of the American Chemical Society, 1999, 121(18): 4526-4527. |
17 | WILHELM Michael E, ANTHOFER Michael H, REICH Robert M, et al. Niobium(v) chloride and imidazolium bromides as efficient dual catalyst systems for the cycloaddition of carbon dioxide and propylene oxide[J]. Catalysis Science & Technology, 2014, 4(6): 1638-1643. |
18 | COKOJA Mirza, WILHELM Michael E, ANTHOFER Michael H, et al. Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts[J]. ChemSusChem, 2015, 8(15): 2436-2454. |
19 | NOROUZI Fereshteh, ABDOLMALEKI Amir. Acidic pyridinium ionic liquid: An efficient bifunctional organocatalyst to synthesis carbonate from atmospheric CO2 and epoxide[J]. Molecular Catalysis, 2023, 538: 112988. |
20 | NOROUZI Fereshteh, ABDOLMALEKI Amir. CO2 conversion into carbonate using pyridinium-based ionic liquids under mild conditions[J]. Fuel, 2023, 334: 126641. |
21 | ARAYACHUKIAT Sunatda, KONGTES Chutima, BARTHEL Alexander, et al. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6392-6397. |
22 | LIU Ning, XIE Yafei, WANG Chuan, et al. Cooperative multifunctional organocatalysts for ambient conversion of carbon dioxide into cyclic carbonates[J]. ACS Catalysis, 2018, 8(11): 9945-9957. |
23 | ALVES M, GRIGNARD B, MEREAU R, et al. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: Catalyst design and mechanistic studies[J]. Catalysis Science & Technology, 2017, 7(13): 2651-2684. |
24 | LIAO Xu, WANG Zeyu, KONG Lingzheng, et al. Synergistic catalysis of hypercrosslinked ionic polymers with multi-ionic sites for conversion of CO2 to cyclic carbonates[J]. Molecular Catalysis, 2023, 535: 112834. |
25 | LIU Mengshuai, WANG Xin, JIANG Yichen, et al. Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: Current state-of-the art of catalyst development and reaction analysis[J]. Catalysis Reviews, 2019, 61(2): 214-269. |
26 | WANG Hongliang, Haoxi BEN, RUAN Hao, et al. Effects of lignin structure on hydrodeoxygenation reactivity of pine wood lignin to valuable chemicals[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1824-1830. |
27 | GUO Li, ZHANG Ran, XIONG Yuge, et al. The application of biomass-based catalytic materials in the synthesis of cyclic carbonates from CO2 and epoxides[J]. Molecules, 2020, 25(16): 3627. |
28 | WANG Hui, GURAU Gabriela, ROGERS Robin D. Ionic liquid processing of cellulose[J]. Chemical Society Reviews, 2012, 41(4): 1519-1537. |
29 | LIANG Shuguang, LIU Huizhen, JIANG Tao, et al. Highly efficient synthesis of cyclic carbonates from CO2 and epoxides over cellulose/KI[J]. Chemical Communications, 2011, 47(7): 2131-2133. |
30 | ROSHAN Kuruppathparambil Roshith, MATHAI George, KIM Juntae, et al. A biopolymer mediated efficient synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. Green Chemistry, 2012, 14(10): 2933-2940. |
31 | ROSHAN Kuruppathparambil Roshith, JOSE Tharun, KATHALIKKATTIL Amal Cherian, et al. Microwave synthesized quaternized celluloses for cyclic carbonate synthesis from carbon dioxide and epoxides[J]. Applied Catalysis A: General, 2013, 467: 17-25. |
32 | YANG Yunlong, GUO Yuanlong, GAO Chengtao, et al. Fabrication of carboxylic acid and imidazolium ionic liquid functionalized porous cellulosic materials for the efficient conversion of carbon dioxide into cyclic carbonates[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2634-2646. |
33 | HU Lingling, XIE Qiujian, TANG Juntao, et al. Co(Ⅲ)-Salen immobilized cellulose nanocrystals for efficient catalytic CO2 fixation into cyclic carbonates under mild conditions[J]. Carbohydrate Polymers, 2021, 256: 117558. |
34 | LIU Yi, LI Shuangjiang, YU Xiaojian, et al. Cellulose nanofibers (CNF) supported (Salen)Cr(Ⅲ) composite as an efficient heterogeneous catalyst for CO2 cycloaddition[J]. Molecular Catalysis, 2023, 547: 113344. |
35 | LIU Can, XU Jingtian, SHAMSA Farzaneh. Cycloaddition of propylene oxide and carbon dioxide using CoMn2O4 nanoparticles supported onto dendritic fibrous nanosilica[J]. Inorganic Chemistry Communications, 2022, 139: 109389. |
36 | KADIB Abdelkrim EL. Chitosan as a sustainable organocatalyst: A concise overview[J]. ChemSusChem, 2015, 8(2): 217-244. |
37 | SUN Jian, WANG Jinquan, CHENG Weiguo, et al. Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2 [J]. Green Chemistry, 2012, 14(3): 654-660. |
38 | CHEN Jingxian, JIN Bi, DAI Weili, et al. Catalytic fixation of CO2 to cyclic carbonates over biopolymer chitosan-grafted quarternary phosphonium ionic liquid as a recylable catalyst[J]. Applied Catalysis A: General, 2014, 484: 26-32. |
39 | THARUN Jose, HWANG Yeseul, ROSHAN Roshith, et al. A novel approach of utilizing quaternized chitosan as a catalyst for the eco-friendly cycloaddition of epoxides with CO2 [J]. Catalysis Science & Technology, 2012, 2(8): 1674-1680. |
40 | THARUN Jose, KIM Dong Woo, ROSHAN Roshith, et al. Microwave assisted preparation of quaternized chitosan catalyst for the cycloaddition of CO2 and epoxides[J]. Catalysis Communications, 2013, 31: 62-65. |
41 | PALIWAL Khushboo S, BISWAS Tanmoy, MITRA Antarip, et al. Ionic liquid functionalized chitosan catalyst with optimized hydrophilic/hydrophobic structural balance for efficient CO2 fixation[J]. Asian Journal of Organic Chemistry, 2022, 11(6): e202200121. |
42 | DING Luogang, YAO Bingjian, LI Fei, et al. Ionic liquid-decorated COF and its covalent composite aerogel for selective CO2 adsorption and catalytic conversion[J]. Journal of Materials Chemistry A, 2019, 7(9): 4689-4698. |
43 | BORJIAN BOROUJENI Mahmoud, LAEINI Mohammad Sadegh, NAZERI Mohammad Taghi, et al. A novel and green in situ strategy for the synthesis of metallophthalocyanines on chitosan and investigation their catalytic activity in the CO2 fixation[J]. Catalysis Letters, 2019, 149(8): 2089-2097. |
44 | WU Yunyan, ZUO Shouwei, ZHAO Yanfei, et al. Biomass-derived metal-organic hybrids for CO2 transformation under ambient conditions[J]. Green Chemistry, 2020, 22(9): 2846-2851. |
45 | REN Xiaomin, LI He, CHEN Jian, et al. N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture[J]. Carbon, 2017, 114: 473-481. |
46 | CHEN Jie, YANG Jie, HU Gengshen, et al. Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1439-1445. |
47 | ZHAN Yingying, HAN Qianqian, PAN Shufa, et al. Biomass-derived hierarchically porous carbons abundantly decorated with nitrogen sites for efficient CO2 catalytic utilization[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 7980-7988. |
48 | PALIWAL Khushboo S, SARKAR Debashrita, MITRA Antarip, et al. Chitosan-derived N-doped carbon for light-mediated carbon dioxide fixation into epoxides[J]. ChemPlusChem, 2023, 88(9): e202300448. |
49 | GUO Li, DOU Rui, WU Yaqi, et al. From lignin waste to efficient catalyst: Illuminating the impact of lignin structure on catalytic activity of cycloaddition reaction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16585-16594. |
50 | XIONG Xingquan, ZHANG Hui, LAI Shilin, et al. Lignin modified by deep eutectic solvents as green, reusable, and bio-based catalysts for efficient chemical fixation of CO2 [J]. Reactive and Functional Polymers, 2020, 149: 104502. |
51 | MAO Haifang, GUO Manli, FU Hongqing, et al. A biomass-ligand-based Ru(Ⅲ) complex as a catalyst for cycloaddition of CO2 and epoxides to cyclic carbonates and a study of the mechanism[J]. European Journal of Inorganic Chemistry, 2023, 26(4): e202200624. |
52 | SONG Kunpeng, TANG Cheng, ZOU Zhijuan, et al. Modification of porous lignin with metalloporphyrin as an efficient catalyst for the synthesis of cyclic carbonates[J]. Transition Metal Chemistry, 2020, 45(2): 111-119. |
53 | SONG Jinliang, ZHANG Zhaofu, HAN Buxing, et al. Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of β-cyclodextrin[J]. Green Chemistry, 2008, 10(12): 1337-1341. |
54 | WANG Sheng, PENG Jing, YANG Haijian, et al. β-cyclodextrin/quaternary ammonium salt as an efficient catalyst system for chemical fixation of CO₂[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(6): 3263-3268. |
55 | LI Kun, WU Xiaohui, GU Qingwen, et al. Inclusion complexes of organic salts with β-cyclodextrin as organocatalysts for CO2 cycloaddition with epoxides[J]. RSC Advances, 2017, 7(24): 14721-14732. |
56 | PENG Jing, WANG Sheng, YANG Haijian, et al. Chemical fixation of CO2 to cyclic carbonate catalyzed by new environmental-friendly bifunctional bis-β-cyclodextrin derivatives[J]. Catalysis Today, 2019, 330: 76-84. |
57 | WANG Shurong, DAI Gongxin, YANG Haiping, et al. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
58 | CHEN Wei, ZHONG Linxin, PENG Xinwen, et al. Chemical fixation of carbon dioxide using a green and efficient catalytic system based on sugarcane bagasse—An agricultural waste[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(1): 147-152. |
59 | LAI Shilin, GAO Jinbing, ZHANG Hui, et al. Luffa sponge supported dendritic imidazolium ILs with high-density active sites as highly efficient and environmentally friendly catalysts for CO2 chemical fixation[J]. Journal of CO2 Utilization, 2020, 38: 148-157. |
[1] | SU Liangjian, XIAO Junyan, ZHANG Chunguang, ZHAO Yuansheng, YANG Xu. Deep regeneration of fixed-bed HDCCR catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 728-734. |
[2] | LI Zhuoyu, YU Meiqi, CHEN Xiaoyan, HU Ruohui, WANG Qinghong, CHEN Chunmao, ZHAN Yali. Effects and mechanism on the removal of nitrobenzene from water by adsorption of refining waste catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1076-1087. |
[3] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
[4] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, FENG Bo, JIANG Zhihui, LYU Yijun, MEN Zhuowu. Advances in Co-based catalysts for syngas to higher alcohol [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 773-787. |
[5] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
[6] | HONG Siqi, GU Fangwei, ZHENG Jinyu. Development status and prospect of low iridium catalysts for hydrogen production by PEM electrolysis [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 158-168. |
[7] | WANG Shixin, YAN Feng, LIU Xiaoli, SONG Guangchun, LI Yuxing, HU Qihui. Review of carbon dioxide pipeline transportation technology under the background of “dual carbon” [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 17-26. |
[8] | SONG Shunming, ZHANG Jingwen, ZHANG Liangqing, QIU Jiarong, CHEN Jianfeng, ZENG Xianhai. Catalytic transformation of biomass-derived polyols to diols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 228-252. |
[9] | QIN Tingting, NIU Qiang. Research progress on Fe-based catalysts for CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 253-265. |
[10] | ZHUANG Ke, CHEN Hong, XU Yun, ZHONG Zhaoping, ZHOU Junwu, ZHOU Kai, DONG Yuehong. Resistance of SiO2 modified Ce-V-W/Ti catalyst support to alkali (earth) metal poisoning [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 266-276. |
[11] | DONG Jiatong, SHAN Mengqing, WANG Hua. Improved electrocatalytic CO2 reduction to ethanol by Au-CuO/Cu2O catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 277-285. |
[12] | YOU Xiaoyin, WANG Chuqiao, LIU Caihua, PENG Xiaoming. Z-scheme CN/NGBO/BV catalytic system and its photo-like Fenton degradation performance of tetracycline [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 286-296. |
[13] | LI Jiayou, ZHANG Yuhan, JIANG Nan, JIANG Bolong. Preparation of transition metal sulfide NiS(x)@NFcatalyst by hydrothermal method and its hydrogen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 297-304. |
[14] | WANG Ning, LU Shijian, LIU Ling, LIANG Jing, LIU Miaomiao, SUN Mengyuan, KANG Guojun. Research progress of catalytic regeneration for energy-efficient CO2 capture in amine absorption system [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 445-464. |
[15] | NI Peng, WANG Xianhong, HUANG Yuhan, MA Xiaotong, MA Zizhen, TAN Yan, ZHANG Huawei, LIU Ting. Latest progress and comparison of the injection demercuration application of activated carbon and magnetic metals adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 513-524. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 39
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |