Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 856-866.DOI: 10.16085/j.issn.1000-6613.2024-0133
• Industrial catalysis • Previous Articles Next Articles
YANG Fan1(), ZHAO Yitao2, ZHU Xuedong2, WANG Darui1(
)
Received:
2024-01-17
Revised:
2024-04-21
Online:
2025-03-10
Published:
2025-02-25
Contact:
WANG Darui
通讯作者:
王达锐
作者简介:
杨帆(1992—),男,博士,研究方向为工业催化。E-mail:yangfan.sshy@sinopec.com。
CLC Number:
YANG Fan, ZHAO Yitao, ZHU Xuedong, WANG Darui. Application of ternary spinel and twined ZSM-5 zeolite in methylation of benzene with carbon dioxide[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 856-866.
杨帆, 赵溢涛, 朱学栋, 王达锐. 三元尖晶石与孪晶ZSM-5分子筛在苯与二氧化碳甲基化中的应用[J]. 化工进展, 2025, 44(2): 856-866.
催化剂 | 苯转化率/% | 产物选择性/% | 芳环收率/% | ||||
---|---|---|---|---|---|---|---|
甲苯 | 二甲苯 | 乙苯 | C9+重芳烃 | 对二甲苯/二甲苯 | |||
ZG/CZ5 | 37.1 | 75.5 | 18.4 | 2.5 | 3.6 | 25.1 | 97.1 |
ZA/CZ5 | 35.3 | 75.7 | 18.3 | 2.3 | 3.7 | 24.5 | 95.2 |
ZY/CZ5 | 22.5 | 89.4 | 8.4 | 1.3 | 0.9 | 26.2 | 95.8 |
ZC/CZ5 | 9.5 | 75.6 | 9.1 | 3.7 | 11.6 | 25.4 | 97.2 |
ZI/CZ5 | 1.2 | 51.7 | 37.2 | 0.8 | 10.3 | 27.2 | 98.6 |
ZF/CZ5 | 13.2 | 19.1 | 0.5 | 68.1 | 12.3 | 28.8 | 93.4 |
MG/CZ5 | 10.2 | 70.1 | 22.6 | 2.3 | 5.0 | 24.5 | 96.4 |
MA/CZ5 | 14.6 | 60.4 | 31.3 | 3.0 | 5.3 | 26.8 | 97.0 |
催化剂 | 苯转化率/% | 产物选择性/% | 芳环收率/% | ||||
---|---|---|---|---|---|---|---|
甲苯 | 二甲苯 | 乙苯 | C9+重芳烃 | 对二甲苯/二甲苯 | |||
ZG/CZ5 | 37.1 | 75.5 | 18.4 | 2.5 | 3.6 | 25.1 | 97.1 |
ZA/CZ5 | 35.3 | 75.7 | 18.3 | 2.3 | 3.7 | 24.5 | 95.2 |
ZY/CZ5 | 22.5 | 89.4 | 8.4 | 1.3 | 0.9 | 26.2 | 95.8 |
ZC/CZ5 | 9.5 | 75.6 | 9.1 | 3.7 | 11.6 | 25.4 | 97.2 |
ZI/CZ5 | 1.2 | 51.7 | 37.2 | 0.8 | 10.3 | 27.2 | 98.6 |
ZF/CZ5 | 13.2 | 19.1 | 0.5 | 68.1 | 12.3 | 28.8 | 93.4 |
MG/CZ5 | 10.2 | 70.1 | 22.6 | 2.3 | 5.0 | 24.5 | 96.4 |
MA/CZ5 | 14.6 | 60.4 | 31.3 | 3.0 | 5.3 | 26.8 | 97.0 |
催化剂 | CO2转化率/% | 产物选择性/% | C平衡 | |||
---|---|---|---|---|---|---|
CO | C1~C4低碳烃 | 乙苯和C9+重芳烃 | ||||
ZG/CZ5 | 34.2 | 51.5 | 11.3 | 10.2 | 28.4 | 96.8 |
ZA/CZ5 | 32.5 | 59.7 | 1.4 | 10.6 | 27.2 | 98.9 |
ZY/CZ5 | 30.0 | 69.1 | 8.1 | 2.3 | 19.1 | 97.3 |
ZC/CZ5 | 40.0 | 81.6 | 3.3 | 6.6 | 5.3 | 99.7 |
ZI/CZ5 | 21.1 | 87.2 | 9.1 | 1.3 | 1.6 | 92.3 |
ZF/CZ5 | 37.7 | 43.4 | 34.0 | 22.3 | 1.3 | 95.8 |
MG/CZ5 | 13.4 | 66.8 | 1.3 | 9.6 | 20.4 | 100.5 |
MA/CZ5 | 17.0 | 61.5 | 1.2 | 11.7 | 24.2 | 99.2 |
催化剂 | CO2转化率/% | 产物选择性/% | C平衡 | |||
---|---|---|---|---|---|---|
CO | C1~C4低碳烃 | 乙苯和C9+重芳烃 | ||||
ZG/CZ5 | 34.2 | 51.5 | 11.3 | 10.2 | 28.4 | 96.8 |
ZA/CZ5 | 32.5 | 59.7 | 1.4 | 10.6 | 27.2 | 98.9 |
ZY/CZ5 | 30.0 | 69.1 | 8.1 | 2.3 | 19.1 | 97.3 |
ZC/CZ5 | 40.0 | 81.6 | 3.3 | 6.6 | 5.3 | 99.7 |
ZI/CZ5 | 21.1 | 87.2 | 9.1 | 1.3 | 1.6 | 92.3 |
ZF/CZ5 | 37.7 | 43.4 | 34.0 | 22.3 | 1.3 | 95.8 |
MG/CZ5 | 13.4 | 66.8 | 1.3 | 9.6 | 20.4 | 100.5 |
MA/CZ5 | 17.0 | 61.5 | 1.2 | 11.7 | 24.2 | 99.2 |
样品 | 比表面积/cm2·g-1 | 平均孔径/nm | 总孔体积/cm3·g-1 | 体相组成(摩尔比) | 表面组成(摩尔比) |
---|---|---|---|---|---|
ZA | 184 | 8.72 | 0.40 | Zn∶Al=1∶2.09 | Zn∶Al=1∶1.88 |
ZGA | 165 | 16.83 | 0.64 | Zn∶Ga∶Al=1∶0.94∶0.96 | Zn∶Ga∶Al=1∶0.91∶0.92 |
ZG | 157 | 15.77 | 0.62 | Zn∶Ga=1∶1.92 | Zn∶Ga=1∶1.78 |
样品 | 比表面积/cm2·g-1 | 平均孔径/nm | 总孔体积/cm3·g-1 | 体相组成(摩尔比) | 表面组成(摩尔比) |
---|---|---|---|---|---|
ZA | 184 | 8.72 | 0.40 | Zn∶Al=1∶2.09 | Zn∶Al=1∶1.88 |
ZGA | 165 | 16.83 | 0.64 | Zn∶Ga∶Al=1∶0.94∶0.96 | Zn∶Ga∶Al=1∶0.91∶0.92 |
ZG | 157 | 15.77 | 0.62 | Zn∶Ga=1∶1.92 | Zn∶Ga=1∶1.78 |
样品 | 比表面积/m2·g-1 | 微孔面积/m2·g-1 | 总孔体积/cm3·g-1 | 微孔体积/cm3·g-1 | Si/Al |
---|---|---|---|---|---|
CZ5 | 357 | 148 | 0.28 | 0.11 | 151.2 |
TZ5 | 336 | 157 | 0.21 | 0.13 | 153.6 |
样品 | 比表面积/m2·g-1 | 微孔面积/m2·g-1 | 总孔体积/cm3·g-1 | 微孔体积/cm3·g-1 | Si/Al |
---|---|---|---|---|---|
CZ5 | 357 | 148 | 0.28 | 0.11 | 151.2 |
TZ5 | 336 | 157 | 0.21 | 0.13 | 153.6 |
催化剂 | 苯转化率/% | 产物选择性/% | 芳环收率/% | ||||
---|---|---|---|---|---|---|---|
甲苯 | 二甲苯 | 乙苯 | C9+重芳烃 | 对二甲苯/二甲苯 | |||
ZA/CZ5 | 35.3 | 75.7 | 18.3 | 2.3 | 3.7 | 24.5 | 95.2 |
ZGA/CZ5 | 42.4 | 72.0 | 22.4 | 1.5 | 4.1 | 25.6 | 95.6 |
ZG/CZ5 | 37.1 | 75.5 | 18.4 | 2.5 | 3.6 | 25.1 | 97.1 |
ZGA/TZ5 | 39.2 | 67.8 | 23.4 | 5.9 | 2.9 | 55.6 | 96.3 |
催化剂 | 苯转化率/% | 产物选择性/% | 芳环收率/% | ||||
---|---|---|---|---|---|---|---|
甲苯 | 二甲苯 | 乙苯 | C9+重芳烃 | 对二甲苯/二甲苯 | |||
ZA/CZ5 | 35.3 | 75.7 | 18.3 | 2.3 | 3.7 | 24.5 | 95.2 |
ZGA/CZ5 | 42.4 | 72.0 | 22.4 | 1.5 | 4.1 | 25.6 | 95.6 |
ZG/CZ5 | 37.1 | 75.5 | 18.4 | 2.5 | 3.6 | 25.1 | 97.1 |
ZGA/TZ5 | 39.2 | 67.8 | 23.4 | 5.9 | 2.9 | 55.6 | 96.3 |
催化剂 | CO2转化率/% | 产物选择性/% | C平衡 | |||
---|---|---|---|---|---|---|
CO | C1~C4低碳烃 | 乙苯和C9+重芳烃 | ||||
ZA/CZ5 | 32.5 | 59.7 | 1.4 | 10.6 | 27.2 | 98.9 |
ZGA/CZ5 | 35.1 | 54.2 | 2.1 | 11.2 | 32.6 | 100.7 |
ZG/CZ5 | 34.2 | 51.5 | 11.3 | 10.2 | 28.4 | 96.8 |
ZGA/TZ5 | 37.1 | 49.3 | 13.1 | 11.1 | 26.6 | 96.6 |
催化剂 | CO2转化率/% | 产物选择性/% | C平衡 | |||
---|---|---|---|---|---|---|
CO | C1~C4低碳烃 | 乙苯和C9+重芳烃 | ||||
ZA/CZ5 | 32.5 | 59.7 | 1.4 | 10.6 | 27.2 | 98.9 |
ZGA/CZ5 | 35.1 | 54.2 | 2.1 | 11.2 | 32.6 | 100.7 |
ZG/CZ5 | 34.2 | 51.5 | 11.3 | 10.2 | 28.4 | 96.8 |
ZGA/TZ5 | 37.1 | 49.3 | 13.1 | 11.1 | 26.6 | 96.6 |
1 | 韩腾飞, 徐红, 葛晖, 等. 苯与合成气烷基化催化剂的研究进展[J]. 化工进展, 2020, 39(8): 3057-3065. |
HAN Tengfei, XU Hong, GE Hui, et al. Progress of alkylation catalysts for benzene with syngas[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3057-3065. | |
2 | ZUO Jiachang, LIU Chong, HAN Xiaoqin, et al. Steering CO2 hydrogenation coupled with benzene alkylation toward ethylbenzene and propylbenzene using a dual-bed catalyst system[J]. Chem Catalysis, 2022, 2(5): 1223-1240. |
3 | ZUO Jiachang, CHEN Weikun, LIU Jia, et al. Selective methylation of toluene using CO2 and H2 to para-xylene[J]. Science Advances, 2020, 6(34): eaba5433. |
4 | TING Kah Wei, KAMAKURA Haruka, POLY Sharmin S, et al. Catalytic methylation of aromatic hydrocarbons using CO2/H2 over Re/TiO2 and H-MOR catalysts[J]. ChemCatChem, 2020, 12(8): 2215-2220. |
5 | SHANG Xin, LIU Guodong, SU Xiong, et al. Preferential synthesis of toluene and xylene from CO2 hydrogenation in the presence of benzene through an enhanced coupling reaction[J]. ACS Catalysis, 2022, 12(21): 13741-13754. |
6 | LIU Xiangyu, PAN Yanling, ZHANG Peng, et al. Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn-Ti/HZSM-5 catalyst[J]. Frontiers of Chemical Science and Engineering, 2022, 16(3): 384-396. |
7 | CHENG Junjun, ZHAO Yitao, XU Guohao, et al. Zn x Zr/HZSM-5 as efficient catalysts for alkylation of benzene with carbon dioxide[J]. Frontiers of Chemical Science and Engineering, 2023, 17(4): 404-414. |
8 | ZHAO Yitao, CHENG Junjun, ZHANG Peng, et al. Examination of key factors determining the catalytic performance of Zn-Ga/HZSM-5 bifunctional catalysts and establishment of reaction network in alkylation of benzene with carbon dioxide[J]. Applied Catalysis A: General, 2022, 643: 118785. |
9 | TING Kah Wei, KAMAKURA Haruka, POLY Sharmin S, et al. Catalytic methylation of m-xylene, toluene, and benzene using CO2 and H2 over TiO2-supported Re and zeolite catalysts: Machine-learning-assisted catalyst optimization[J]. ACS Catalysis, 2021, 11(9): 5829-5838. |
10 | Vlasta MOHAČEK-GROŠEV, Martina VRANKIĆ, Aleksandar MAKSIMOVIĆ, et al. Influence of titanium doping on the Raman spectra of nanocrystalline ZnAl2O4 [J]. Journal of Alloys and Compounds, 2017, 697: 90-95. |
11 | JAIN Megha, Manju, KUMAR Ravi, et al. Defect states and kinetic parameter analysis of ZnAl2O4 nanocrystals by X-ray photoelectron spectroscopy and thermoluminescence[J]. Scientific Reports, 2020, 10(1): 385. |
12 | CHIKOIDZE Ekaterine, SARTEL Corinne, MADACI Ismail, et al. P-type ultrawide-band-gap spinel ZnGa2O4: New perspectives for energy electronics[J]. Crystal Growth & Design, 2020, 20(4): 2535-2546. |
13 | SHAN Guiye, WANG Shuang, FEI Xiaofang, et al. Heterostructured ZnO/Au nanoparticles-based resonant Raman scattering for protein detection[J]. The Journal of Physical Chemistry B, 2009, 113(5): 1468-1472. |
14 | XUE Zhenggang, CHENG Zhixuan, XU Jin, et al. Controllable evolution of dual defect Zni and VO associate-rich ZnO nanodishes with (0001) exposed facet and its multiple sensitization effect for ethanol detection[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41559-41567. |
15 | LIU Fengjun, WANG Xinzhen, CHEN Xiaoyan, et al. Porous ZnO ultrathin nanosheets with high specific surface areas and abundant oxygen vacancies for acetylacetone gas sensing[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24757-24763. |
16 | WANG Chen, ZHANG Jianli, GAO Xinhua, et al. CO2 hydrogenation to linear α-olefins on FeC x /ZnO catalysts: Effects of surface oxygen vacancies[J]. Applied Surface Science, 2023, 641: 158543. |
17 | WANG Chuanfu, ZHANG Lei, HUANG Xin, et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene[J]. Nature Communications, 2019, 10(1): 4348. |
18 | KLINE Charles H, Jr, TURKEVICH John. The vibrational spectrum of pyridine and the thermodynamic properties of pyridine vapors[J]. The Journal of Chemical Physics, 1944, 12(7): 300-309. |
19 | CONNELL Glen, DUMESIC J A. Acidic properties of binary oxide catalysts: Ⅱ. Mössbauer spectroscopy and pyridine adsorption for iron supported on magnesia, alumina, and titania[J]. Journal of Catalysis, 1986, 102(1): 216-233. |
20 | EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. Journal of Catalysis, 1993, 141(2): 347-354. |
21 | YANG Yu, ZHANG Ping. Dissociation of H2 molecule on the β-Ga2O3 (100)B surface: The critical role of oxygen vacancy[J]. Physics Letters A, 2010, 374(40): 4169-4173. |
22 | PAN Yunxiang, MEI Donghai, LIU Changjun, et al. Hydrogen adsorption on Ga2O3 surface: A combined experimental and computational study[J]. The Journal of Physical Chemistry C, 2011, 115(20): 10140-10146. |
23 | NYBERG Mats, NYGREN Martin A, PETTERSSON Lars G M, et al. Hydrogen dissociation on reconstructed ZnO surfaces[J]. The Journal of Physical Chemistry, 1996, 100(21): 9054-9063. |
24 | LING Yunjian, LUO Jie, RAN Yihua, et al. Atomic-scale visualization of heterolytic H2 dissociation and CO x hydrogenation on ZnO under ambient conditions[J]. Journal of the American Chemical Society, 2023, 145(41): 22697-22707. |
25 | BLEKEN Francesca Lønstad, CHAVAN Sachin, OLSBYE Unni, et al. Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity[J]. Applied Catalysis A: General, 2012, 447/448: 178-185. |
26 | WESTGÅRD ERICHSEN Marius, SVELLE Stian, OLSBYE Unni. H-SAPO-5 as methanol-to-olefins (MTO) model catalyst: Towards elucidating the effects of acid strength[J]. Journal of Catalysis, 2013, 298: 94-101. |
27 | GOBIN O C, REITMEIER S J, JENTYS A, et al. Diffusion pathways of benzene, toluene and p-xylene in MFI[J]. Microporous and Mesoporous Materials, 2009, 125(1/2): 3-10. |
28 | YANG Fan, FANG Yuehua, LIU Xiangyu, et al. One-step alkylation of benzene with syngas over non-noble catalysts mixed with modified HZSM-5[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 13879-13888. |
29 | BREEN John, BURCH Robbie, KULKARNI Manisha, et al. Enhanced para-xylene selectivity in the toluene alkylation reaction at ultralow contact time[J]. Journal of the American Chemical Society, 2005, 127(14): 5020-5021. |
[1] | LI Zhuoyu, YU Meiqi, CHEN Xiaoyan, HU Ruohui, WANG Qinghong, CHEN Chunmao, ZHAN Yali. Effects and mechanism on the removal of nitrobenzene from water by adsorption of refining waste catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1076-1087. |
[2] | ZHAO Ke, ZHANG Heng, ZHAI Qian, ZHEN Qi, SU Tianyang, CUI Jingqiang. Designing of composite structure and liquid transmission behavior of the polylactic acid/polyethylene glycol @ sodium dodecyl sulfate microfibrous water evaporator [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1014-1024. |
[3] | ZHANG Tiantian, LIU Xia, ZHANG Hongfei, LI Qian, ZHOU Hongyu, LI Binglin. Green biosynthesis of docosahexaenoic acid-rich phosphatidylserine in solvent-free system [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1033-1041. |
[4] | LI Zhixing, DAI Weijiong, LIU Xiangyang, WANG Fei, LI Ruifeng. Insight into structure and reactivity of ZSM-5 [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 788-808. |
[5] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
[6] | LIAO Xu, WANG Wei, HUANG Wenting, XIONG Wentao, WANG Zeyu, QIN Zuodong, LIN Jinqing. Research progress in biomass-based catalysts in the conversion of carbon dioxide into cyclic carbonates [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 834-846. |
[7] | HU Yang, HAN Chuanjun, HU Qiang, LI Wenying, AN Quancheng, SU Yang, WU Hongsong, YUAN Guo. Research progress on methanol steam reforming reactors for SOFC [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 169-183. |
[8] | WANG Shixin, YAN Feng, LIU Xiaoli, SONG Guangchun, LI Yuxing, HU Qihui. Review of carbon dioxide pipeline transportation technology under the background of “dual carbon” [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 17-26. |
[9] | SHAO Xiangyu, CAO Tianhao, XIONG Yanyi, PU Liang, LEI Gang, GAO Jianliang. Research hotspots, frontiers and evolution in the field of liquid hydrogen in China during the last 30 years (1994—2023) [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 212-227. |
[10] | QIN Tingting, NIU Qiang. Research progress on Fe-based catalysts for CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 253-265. |
[11] | DONG Jiatong, SHAN Mengqing, WANG Hua. Improved electrocatalytic CO2 reduction to ethanol by Au-CuO/Cu2O catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 277-285. |
[12] | LI Jiayou, ZHANG Yuhan, JIANG Nan, JIANG Bolong. Preparation of transition metal sulfide NiS(x)@NFcatalyst by hydrothermal method and its hydrogen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 297-304. |
[13] | LIU Wei, ZHANG Min, ZHU Zhaoqi, WANG Yi, LIANG Weidong, SUN Hanxue. Preparation and current applications of black titanium dioxide nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 341-353. |
[14] | JIANG Liping, ZHANG Xueqiao, ZHONG Xiaojuan, WEI Yufan, XIAO Li, GUO Xujing, YANG Yijin. Optimization of acid leaching process of iron from vanadium slag and preparation of composite photocatalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 538-548. |
[15] | ZOU Yan, LIN Wei, YANG Wei, ZHANG Yanrong. Optimization of wet desulfurization process with iron chelates [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 549-557. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 7
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |