Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 788-808.DOI: 10.16085/j.issn.1000-6613.2024-0155
• Industrial catalysis • Previous Articles Next Articles
LI Zhixing(), DAI Weijiong(
), LIU Xiangyang, WANG Fei, LI Ruifeng(
)
Received:
2024-01-19
Revised:
2024-04-01
Online:
2025-03-10
Published:
2025-02-25
Contact:
DAI Weijiong, LI Ruifeng
通讯作者:
代卫炯,李瑞丰
作者简介:
李知行(1995—),男,博士研究生,研究方向为沸石分子筛合成。E-mail:LZX37765@163.com。
基金资助:
CLC Number:
LI Zhixing, DAI Weijiong, LIU Xiangyang, WANG Fei, LI Ruifeng. Insight into structure and reactivity of ZSM-5[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 788-808.
李知行, 代卫炯, 刘相洋, 王飞, 李瑞丰. ZSM-5分子筛结构与反应性的研究进展[J]. 化工进展, 2025, 44(2): 788-808.
样品 | Si/Al | NH3-TPD (氮气程序升温脱附) /mmol·g-1 | Py-IR (吡啶红外) /mmol·g-1 | 应用 | 催化性能 | 参考 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
总酸量 | 弱酸 | 强酸 | 总酸量 | B酸 | L酸 | ||||||
ZSM-5-N① | 39 | 0.73 | 0.46 | 0.27 | 0.59 | 0.42 | 0.17 | 苯烷基化反应 | 苯转化率41.5% | 甲苯选择性66.7% | [ |
ZSM-5-E① | 38 | 0.69 | 0.44 | 0.25 | 0.60 | 0.43 | 0.17 | 苯转化率43.9% | 甲苯选择性60.9% | ||
ZSM-5-P① | 39 | 0.71 | 0.45 | 0.26 | 0.64 | 0.43 | 0.21 | 苯转化率46.2% | 甲苯选择性56.4% | ||
ZSM-5-B① | 37 | 0.68 | 0.43 | 0.25 | 0.59 | 0.41 | 0.18 | 苯转化率51.1% | 甲苯选择性49.5% | ||
HZ-Zoned② | 39 | 0.392 | — | — | — | 0.171 | 0.188 | 甲醇制芳烃 | 芳烃选择性34.9% | 氢转移指数0.81 | [ |
HZ-40② | 40 | 0.373 | — | — | — | 0.159 | 0.210 | 芳烃选择性28.4% | 氢转移指数0.54 | ||
S-HZ-20③ | 20 | 0.58 | 0.31 | 0.27 | 0.43 | 0.26 | 0.17 | 甲醇制烯烃 | 乙烯选择性7.2% | 丙烯选择性41.2% | [ |
T-HZ-20③ | 20 | 0.45 | 0.25 | 0.2 | 0.27 | 0.13 | 0.14 | 乙烯选择性18.1% | 丙烯选择性24.0% | ||
S-HZ-40③ | 40 | 0.56 | 0.22 | 0.34 | 0.32 | 0.25 | 0.07 | 乙烯选择性3.7% | 丙烯选择性47.7% | ||
T-HZ-40③ | 40 | 0.42 | 0.19 | 0.23 | 0.22 | 0.14 | 0.08 | 乙烯选择性15.3% | 丙烯选择性33.2% | ||
S-HZ-80③ | 80 | 0.24 | 0.09 | 0.15 | 0.13 | 0.1 | 0.03 | 乙烯选择性9.0% | 丙烯选择性48.9% | ||
T-HZ-80③ | 80 | 0.22 | 0.09 | 0.13 | 0.11 | 0.08 | 0.03 | 乙烯选择性11.8% | 丙烯选择性45.2% | ||
S-HZ-160③ | 160 | 0.10 | 0.02 | 0.08 | 0.04 | 0.01 | 0.03 | 乙烯选择性1.2% | 丙烯选择性43.9% | ||
T-HZ-160③ | 160 | 0.10 | 0.03 | 0.07 | 0.04 | 0.01 | 0.03 | 乙烯选择性3.7% | 丙烯选择性49.5% |
样品 | Si/Al | NH3-TPD (氮气程序升温脱附) /mmol·g-1 | Py-IR (吡啶红外) /mmol·g-1 | 应用 | 催化性能 | 参考 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
总酸量 | 弱酸 | 强酸 | 总酸量 | B酸 | L酸 | ||||||
ZSM-5-N① | 39 | 0.73 | 0.46 | 0.27 | 0.59 | 0.42 | 0.17 | 苯烷基化反应 | 苯转化率41.5% | 甲苯选择性66.7% | [ |
ZSM-5-E① | 38 | 0.69 | 0.44 | 0.25 | 0.60 | 0.43 | 0.17 | 苯转化率43.9% | 甲苯选择性60.9% | ||
ZSM-5-P① | 39 | 0.71 | 0.45 | 0.26 | 0.64 | 0.43 | 0.21 | 苯转化率46.2% | 甲苯选择性56.4% | ||
ZSM-5-B① | 37 | 0.68 | 0.43 | 0.25 | 0.59 | 0.41 | 0.18 | 苯转化率51.1% | 甲苯选择性49.5% | ||
HZ-Zoned② | 39 | 0.392 | — | — | — | 0.171 | 0.188 | 甲醇制芳烃 | 芳烃选择性34.9% | 氢转移指数0.81 | [ |
HZ-40② | 40 | 0.373 | — | — | — | 0.159 | 0.210 | 芳烃选择性28.4% | 氢转移指数0.54 | ||
S-HZ-20③ | 20 | 0.58 | 0.31 | 0.27 | 0.43 | 0.26 | 0.17 | 甲醇制烯烃 | 乙烯选择性7.2% | 丙烯选择性41.2% | [ |
T-HZ-20③ | 20 | 0.45 | 0.25 | 0.2 | 0.27 | 0.13 | 0.14 | 乙烯选择性18.1% | 丙烯选择性24.0% | ||
S-HZ-40③ | 40 | 0.56 | 0.22 | 0.34 | 0.32 | 0.25 | 0.07 | 乙烯选择性3.7% | 丙烯选择性47.7% | ||
T-HZ-40③ | 40 | 0.42 | 0.19 | 0.23 | 0.22 | 0.14 | 0.08 | 乙烯选择性15.3% | 丙烯选择性33.2% | ||
S-HZ-80③ | 80 | 0.24 | 0.09 | 0.15 | 0.13 | 0.1 | 0.03 | 乙烯选择性9.0% | 丙烯选择性48.9% | ||
T-HZ-80③ | 80 | 0.22 | 0.09 | 0.13 | 0.11 | 0.08 | 0.03 | 乙烯选择性11.8% | 丙烯选择性45.2% | ||
S-HZ-160③ | 160 | 0.10 | 0.02 | 0.08 | 0.04 | 0.01 | 0.03 | 乙烯选择性1.2% | 丙烯选择性43.9% | ||
T-HZ-160③ | 160 | 0.10 | 0.03 | 0.07 | 0.04 | 0.01 | 0.03 | 乙烯选择性3.7% | 丙烯选择性49.5% |
1 | BENSAFI Boumediéne, CHOUAT Nadjat, DJAFRI Fatiha. The universal zeolite ZSM-5: Structure and synthesis strategies. A review[J]. Coordination Chemistry Reviews, 2023, 496: 215397. |
2 | LEE Kyungho, LEE Songhyun, Youngsun JUN, et al. Cooperative effects of zeolite mesoporosity and defect sites on the amount and location of coke formation and its consequence in deactivation[J]. Journal of Catalysis, 2017, 347: 222-230. |
3 | SONG Chenhai, CHU Yueying, WANG Meng, et al. Cooperativity of adjacent Brønsted acid sites in MFI zeolite channel leads to enhanced polarization and cracking of alkanes[J]. Journal of Catalysis, 2017, 349: 163-174. |
4 | WANG Ning, SUN Wenjing, HOU Yilin, et al. Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons[J]. Journal of Catalysis, 2018, 360: 89-96. |
5 | Juna BAE, DUSSELIER Michiel. Synthesis strategies to control the Al distribution in zeolites: Thermodynamic and kinetic aspects[J]. Chemical Communications, 2023, 59(7): 852-867. |
6 | ALTHOFF R, SCHULZ-DOBRICK B, SCHÜTH F, et al. Controlling the spatial distribution of aluminum in ZSM-5 crystals[J]. Microporous Materials, 1993, 1(3): 207-218. |
7 | VON BALLMOOS R, MEIER W M. Zoned aluminium distribution in synthetic zeolite ZSM-5[J]. Nature, 1981, 289: 782-783. |
8 | NADIYA Danilina, FRANK Krumeich, CASTELANELLI Stefano A, et al. Where are the active sites in zeolites? origin of aluminum zoning in ZSM-5[J]. The Journal of Physical Chemistry C, 2010, 114(14): 6640-6645. |
9 | BICKEL Elizabeth E, NIMLOS Claire T, GOUNDER Rajamani. Developing quantitative synthesis-structure-function relations for framework aluminum arrangement effects in zeolite acid catalysis[J]. Journal of Catalysis, 2021, 399: 75-85. |
10 | CHEN Lihua, SUN Minghui, WANG Zhao, et al. Hierarchically structured zeolites: From design to application[J]. Chemical Reviews, 2020, 120(20): 11194-11294. |
11 | ZHANG Lu, CHEN Kuizhi, CHEN Banghao, et al. Factors that determine zeolite stability in hot liquid water[J]. Journal of the American Chemical Society, 2015, 137(36): 11810-11819. |
12 | SERRANO David P, CALLEJA Guillermo, BOTAS Juan A, et al. Characterization of adsorptive and hydrophobic properties of silicalite-1, ZSM-5, TS-1 and Beta zeolites by TPD techniques[J]. Separation and Purification Technology, 2007, 54(1): 1-9. |
13 | RAVI Manoj, SUSHKEVICH Vitaly L, VAN BOKHOVEN Jeroen A. Towards a better understanding of Lewis acidic aluminium in zeolites[J]. Nature Materials, 2020, 19(10): 1047-1056. |
14 | LI Teng, KRUMEICH Frank, CHEN Ming, et al. Defining aluminum-zoning during synthesis of ZSM-5 zeolites[J]. Physical Chemistry Chemical Physics, 2020, 22(2): 734-739. |
15 | LE Thuy T, CHAWLA Aseem, RIMER Jeffrey D. Impact of acid site speciation and spatial gradients on zeolite catalysis[J]. Journal of Catalysis, 2020, 391: 56-68. |
16 | OLSON D H, KOKOTAILO G T, LAWTON S L, et al. Crystal structure and structure-related properties of ZSM-5[J]. The Journal of Physical Chemistry, 1981, 85(15): 2238-2243. |
17 | Jiri DĚDEČEK, TABOR Edyta, SKLENAK Stepan. Tuning the aluminum distribution in zeolites to increase their performance in acid-catalyzed reactions[J]. ChemSusChem, 2019, 12(3): 556-576. |
18 | KOBERA Libor, DEDECEK Jiri, KLEIN Petr, et al. Formation and local structure of framework Al Lewis sites in Beta zeolites[J]. The Journal of Chemical Physics, 2022, 156(10): 104702. |
19 | TANG Xiaomin, CHEN Wei, DONG Wenjun, et al. Framework aluminum distribution in ZSM-5 zeolite directed by organic structure-directing agents: A theoretical investigation[J]. Catalysis Today, 2022, 405/406: 101-110. |
20 | Jiri DĚDEČEK, Vendula BALGOVÁ, PASHKOVA Veronika, et al. Synthesis of ZSM-5 zeolites with defined distribution of Al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution[J]. Chemistry of Materials, 2012, 24(16): 3231-3239. |
21 | BELLMANN Andrea, RAUTENBERG Christine, BENTRUP Ursula, et al. Determining the location of Co2+ in zeolites by UV-Vis diffuse reflection spectroscopy: A critical view[J]. Catalysts, 2020, 10(1): 123. |
22 | LIANG Tingyu, CHEN Jialing, QIN Zhangfeng, et al. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework aluminum siting[J]. ACS Catalysis, 2016, 6(11): 7311-7325. |
23 | WANG Weiyu, XU Jun, DENG Feng. Recent advances in solid-state NMR of zeolite catalysts[J]. National Science Review, 2022, 9(9): nwac155. |
24 | Shadi AL-NAHARI, Eddy DIB, CAMMARANO Claudia, et al. Impact of mineralizing agents on aluminum distribution and acidity of ZSM-5 zeolites[J]. Angewandte Chemie International Edition, 2023, 62(7): e202217992. |
25 | YOKOI Toshiyuki, MOCHIZUKI Hiroshi, NAMBA Seitaro, et al. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15303-15315. |
26 | SKLENAK Stepan, Jiří DĚDEČEK, LI Chengbin, et al. Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations[J]. Physical Chemistry Chemical Physics, 2009, 11(8): 1237-1247. |
27 | Eddy DIB, MINEVA Tzonka, VERON Emmanuel, et al. ZSM-5 zeolite: Complete Al bond connectivity and implications on structure formation from solid-state NMR and quantum chemistry calculations[J]. The Journal of Physical Chemistry Letters, 2018, 9(1): 19-24. |
28 | PEREA Daniel E, ARSLAN Ilke, LIU Jia, et al. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography[J]. Nature Communications, 2015, 6: 7589. |
29 | LIU Lingmei, WANG Ning, ZHU Chongzhi, et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5[J]. Angewandte Chemie International Edition, 2020, 59(2): 819-825. |
30 | WANG Yilin, LIU Xinhui, HE Xuan, et al. Tailoring the framework aluminum arrangement in ZSM-5 zeolite to regulate reaction route for alkylation of benzene with methanol[J]. Microporous and Mesoporous Materials, 2023, 351: 112491. |
31 | LI Teng, CHUNG Sang-Ho, NASTASE Stefan, et al. Influence of active-site proximity in zeolites on Brønsted acid-catalyzed reactions at the microscopic and mesoscopic levels[J]. Chem Catalysis, 2023, 3(6): 100540. |
32 | ABBASIZADEH Saeed, KARIMZADEH Ramin. Effect of next-nearest-neighbor aluminum atoms in the HZSM-5 framework synthesized with various aluminum sources on liquefied petroleum gas transformation to light olefins[J]. Industrial & Engineering Chemistry Research, 2018, 57(23): 7783-7794. |
33 | XING Mengjiao, ZHANG Ling, CAO Jian, et al. Impact of the aluminum species state on Al pairs formation in the ZSM-5 framework[J]. Microporous and Mesoporous Materials, 2022, 334: 111769. |
34 | CHEN Zhen, WANG Lingjuan, RAO Richuan, et al. An investigation on the effect of cross-linking state of silicon species on the distribution of framework Al atoms in ZSM-5 zeolite and its catalytic performance for MTO reaction[J]. Applied Catalysis A: General, 2023, 665: 119356. |
35 | YOKOI Toshiyuki, MOCHIZUKI Hiroshi, BILIGETU Turgen, et al. Unique Al distribution in the MFI framework and its impact on catalytic properties[J]. Chemistry Letters, 2017, 46(6): 798-800. |
36 | LE Thuy T, QIN Wei, AGARWAL Ankur, et al. Elemental zoning enhances mass transport in zeolite catalysts for methanol to hydrocarbons[J]. Nature Catalysis, 2023, 6: 254-265. |
37 | KIM Sungtak, PARK Gyungah, Min Hee WOO, et al. Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion[J]. ACS Catalysis, 2019, 9(4): 2880-2892. |
38 | JANDA Amber, BELL Alexis T. Effects of Si/Al ratio on the distribution of framework Al and on the rates of alkane monomolecular cracking and dehydrogenation in H-MFI[J]. Journal of the American Chemical Society, 2013, 135(51): 19193-19207. |
39 | CHEN Kang, WU Xueqiu, ZHAO Jiyu, et al. Organic-free modulation of the framework Al distribution in ZSM-5 zeolite by magnesium participated synthesis and its impact on the catalytic cracking reaction of alkanes[J]. Journal of Catalysis, 2022, 413: 735-750. |
40 | XUE Yanfeng, LI Junfen, WANG Pengfei, et al. Regulating Al distribution of ZSM-5 by Sn incorporation for improving catalytic properties in methanol to olefins[J]. Applied Catalysis B: Environmental, 2021, 280: 119391. |
41 | LI Chengeng, Alejandro VIDAL-MOYA, MIGUEL Pablo J, et al. Selective introduction of acid sites in different confined positions in ZSM-5 and its catalytic implications[J]. ACS Catalysis, 2018, 8(8): 7688-7697. |
42 | CUI Nan, GUO Hangle, ZHOU Jian, et al. Regulation of framework Al distribution of high-silica hierarchically structured ZSM-5 zeolites by boron-modification and its effect on materials catalytic performance in methanol-to-propylene reaction[J]. Microporous and Mesoporous Materials, 2020, 306: 110411. |
43 | BOZHILOV Krassimir N, LE Thuy Thanh, QIN Zhengxing, et al. Time-resolved dissolution elucidates the mechanism of zeolite MFI crystallization[J]. Science Advances, 2021, 7(25): eabg0454. |
44 | FENG Guodong, CHENG Peng, YAN Wenfu, et al. Accelerated crystallization of zeolites via hydroxyl free radicals[J]. Science, 2016, 351(6278): 1188-1191. |
45 | KUMAR Sandeep, WANG Zhuopeng, R Lee PENN, et al. A structural resolution cryo-TEM study of the early stages of MFI growth[J]. Journal of the American Chemical Society, 2008, 130(51): 17284-17286. |
46 | SCHROEDER Christian, SIOZIOS Vassilios, Christian MÜCK-LICHTENFELD, et al. Hydrogen bond formation of Brønsted acid sites in zeolites[J]. Chemistry of Materials, 2020, 32(4): 1564-1574. |
47 | TREPS Laureline, GOMEZ Axel, DE BRUIN Theodorus, et al. Environment, stability and acidity of external surface sites of silicalite-1 and ZSM-5 micro and nano slabs, sheets, and crystals[J]. ACS Catalysis, 2020, 10(5): 3297-3312. |
48 | 何磊, 么秋香, 孙鸣, 等. 二维(2D)沸石与三维(3D)沸石的制备及催化研究进展[J]. 化学学报, 2022, 80(2): 180-198. |
HE Lei, YAO Qiuxiang, SUN Ming, et al. Progress in preparation and catalysis of two-dimensional (2D) and three-dimensional (3D) zeolites[J]. Acta Chimica Sinica, 2022, 80(2): 180-198. | |
49 | ZHANG Nan, LIU Chunli, MA Jinghong, et al. Determining the structures, acidity and adsorption properties of Al substituted HZSM-5[J]. Physical Chemistry Chemical Physics, 2019, 21(34): 18758-18768. |
50 | JONES Andrew J, IGLESIA Enrique. The strength of Brønsted acid sites in microporous aluminosilicates[J]. ACS Catalysis, 2015, 5(10): 5741-5755. |
51 | YI Fengjiao, XU Dan, TAO Zhichao, et al. Correlation of Brønsted acid sites and Al distribution in ZSM-5 zeolites and their effects on butenes conversion[J]. Fuel, 2022, 320: 123729. |
52 | ZHANG Liwei, ZHANG Huaike, CHEN Zhiqiang, et al. Insight into the impact of Al distribution on the catalytic performance of 1-octene aromatization over ZSM-5 zeolite[J]. Catalysis Science & Technology, 2019, 9(24): 7034-7044. |
53 | ALAITHAN Zainab A, HARRISON Nicholas, SASTRE German. Diffusivity of propylene in one-dimensional medium-pore zeolites[J]. The Journal of Physical Chemistry C, 2021, 125(35): 19200-19208. |
54 | BERNAUER M, TABOR E, PASHKOVA V, et al. Proton proximity—New key parameter controlling adsorption, desorption and activity in propene oligomerization over H-ZSM-5 zeolites[J]. Journal of Catalysis, 2016, 344: 157-172. |
55 | FU Tingjun, ZHOU Hao, LI Zhong. Controllable synthesis of ultra-tiny nano-ZSM-5 catalyst based on the control of crystal growth for methanol to hydrocarbon reaction[J]. Fuel Processing Technology, 2021, 211: 106594. |
56 | Kinga GOŁĄBEK, TABOR Edyta, PASHKOVA Veronika, et al. The proximity of aluminium atoms influences the reaction pathway of ethanol transformation over zeolite ZSM-5[J]. Communications Chemistry, 2020, 3(1): 25. |
57 | QIAN Ji, XIONG Guang, LIU Jiaxu, et al. A preliminary study on the role of the internal and external surfaces of nano-ZSM-5 zeolite in the alkylation of benzene with methanol[J]. Industrial & Engineering Chemistry Research, 2019, 58(21): 9006-9016. |
58 | WANG Sen, WANG Pengfei, QIN Zhangfeng, et al. Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11[J]. ACS Catalysis, 2018, 8: 5485-5505. |
59 | LIU Hua, WANG Hui, XING Aihua, et al. Effect of Al distribution in MFI framework channels on the catalytic performance of ethane and ethylene aromatization[J]. The Journal of Physical Chemistry C, 2019, 123(25): 15637-15647. |
60 | ZHANG Nan, MA Jinghong, LI Ruifeng, et al. Hydrocracking of fused aromatic hydrocarbons catalyzed by Al-substituted HZSM-5—A case study of 9,10-dihydroanthracene[J]. ACS Catalysis, 2020, 10(16): 9215-9226. |
61 | WANG Chuanfu, ZHANG Lei, HUANG Xin, et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene[J]. Nature Communications, 2019, 10(1): 4348. |
62 | WANG Ning, LI Jing, SUN Wenjing, et al. Rational design of zinc/zeolite catalyst: Selective formation of p-xylene from methanol to aromatics reaction[J]. Angewandte Chemie International Edition, 2022, 61(10): e202114786. |
63 | DAI Heng, SHEN Yufeng, YANG Taimin, et al. Finned zeolite catalysts[J]. Nature Materials, 2020, 19: 1074-1080. |
64 | SHAO Juan, FU Tingjun, MA Qian, et al. Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons[J]. Microporous and Mesoporous Materials, 2019, 273: 122-132. |
65 | WANG Xiangyu, MA Ye, WU Qinming, et al. Zeolite nanosheets for catalysis[J]. Chemical Society Reviews, 2022, 51(7): 2431-2443. |
66 | FIGUEIREDO Aneliése L, ARAUJO Antonio S, LINARES María, et al. Catalytic cracking of LDPE over nanocrystalline HZSM-5 zeolite prepared by seed-assisted synthesis from an organic-template-free system[J]. Journal of Analytical and Applied Pyrolysis, 2016, 117: 132-140. |
67 | WANG Jie, ZHANG Ruizhen, HAN Lina, et al. Seed-assisted synthesis and characterization of nano and micron ZSM-5 molecular sieves in template-free system[J]. Journal of Solid State Chemistry France, 2020, 290: 121536. |
68 | VALTCHEV Valentin, TOSHEVA Lubomira. Porous nanosized particles: Preparation, properties, and applications[J]. Chemical Reviews, 2013, 113(8): 6734-6760. |
69 | 邵秀丽, 王驷骐, 张轩, 等. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666. |
SHAO Xiuli, WANG Siqi, ZHANG Xuan, et al. Fabrication and application of MFI zeolite nanosheets[J]. Progress in Chemistry, 2022, 34(12): 2651-2666. | |
70 | XIONG Feng, JI Chen, GAN Shengzhi, et al. Tuning the mesoscopically structured ZSM-5 nanosheets for the alkylation between toluene and methanol[J]. AIChE Journal, 2023, 69(6): e18054. |
71 | ZHANG Jiaxing, ZHOU Ajuan, GAWANDE Kaivalya, et al. b-axis-oriented ZSM-5 nanosheets for efficient alkylation of benzene with methanol: Synergy of acid sites and diffusion[J]. ACS Catalysis, 2023, 13(6): 3794-3805. |
72 | CHOI Minkee, NA Kyungsu, KIM Jeongnam, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. |
73 | ZHU Peng, WANG Jinshan, XIA Fei, et al. Alcohol-assisted synthesis of sheet-like ZSM-5 zeolites with controllable aspect ratios[J]. European Journal of Inorganic Chemistry, 2023, 26(9): e202200664. |
74 | VAROON AGRAWAL Kumar, ZHANG Xueyi, ELYASSI Bahman, et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane[J]. Science, 2011, 334(6052): 72-75. |
75 | PARK Woojin, YU Doae, NA Kyungsu, et al. Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets[J]. Chemistry of Materials, 2011, 23(23): 5131-5137. |
76 | DAI Weijiong, KOUVATAS Cassandre, TAI Wenshu, et al. Platelike MFI crystals with controlled crystal faces aspect ratio[J]. Journal of the American Chemical Society, 2021, 143(4): 1993-2004. |
77 | FENG Rui, YAN Xinlong, HU Xiaoyan, et al. Direct synthesis of b-axis oriented H-form ZSM-5 zeolites with an enhanced performance in the methanol to propylene reaction[J]. Microporous and Mesoporous Materials, 2020, 302: 110246. |
78 | LIU Yi, QIANG Weili, JI Taotao, et al. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication[J]. Science Advances, 2020, 6(7): eaay5993. |
79 | ZHANG Xueyi, LIU Dongxia, XU Dandan, et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching[J]. Science, 2012, 336(6089): 1684-1687. |
80 | MALLETTE Adam J, SEO Seungwan, RIMER Jeffrey D. Synthesis strategies and design principles for nanosized and hierarchical zeolites[J]. Nature Synthesis, 2022, 1: 521-534. |
81 | ALOTIBI Mohammed F, ALSHAMMARI Basheer A, ALOTAIBI Mohammad Hayal, et al. ZSM-5 zeolite based additive in FCC process: A review on modifications for improving propylene production[J]. Catalysis Surveys from Asia, 2020, 24(1): 1-10. |
82 | BU Lintao, NIMLOS Mark R, ROBICHAUD David J, et al. Diffusion of aromatic hydrocarbons in hierarchical mesoporous H-ZSM-5 zeolite[J]. Catalysis Today, 2018, 312: 73-81. |
83 | SCHWIEGER Wilhelm, MACHOKE Albert Gonche, WEISSENBERGER Tobias, et al. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity[J]. Chemical Society Reviews, 2016, 45(12): 3353-3376. |
84 | YANG Xiaoyu, CHEN Lihua, LI Yu, et al. Hierarchically porous materials: Synthesis strategies and structure design[J]. Chemical Society Reviews, 2017, 46(2): 481-558. |
85 | GALADIMA Ahmad, MURAZA Oki. Hydrocracking catalysts based on hierarchical zeolites: A recent progress[J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 265-280. |
86 | LI Qiang, WEN Zhenhao, ZHANG Zhenbao, et al. Surfactant-assisted hydrothermal synthesis of core-shell ZSM-5@SSZ-13 zeolite for methanol to olefins reaction[J]. Molecular Catalysis, 2023, 547: 113321. |
87 | LIAO Mingjie, NING Xin, CHEN Junwen, et al. Mesoporous ZSM-5 catalysts for the synthesis of clean jet-fuels by 1-hexene oligomerization[J]. Fuel, 2021, 304: 121383. |
88 | ZHANG Lichen, SUN Xiaobo, PAN Meng, et al. Interfacial effects between carbon nanotube templates and precursors on fabricating a wall-crystallized hierarchical pore system in zeolite crystals[J]. Journal of Materials Science, 2020, 55(24): 10412-10426. |
89 | XUE Z, MA J, ZHENG J, et al. Hierarchical structure and catalytic properties of a microspherical zeolite with intracrystalline mesopores[J]. Acta Materialia, 2012, 60(16): 5712-5722. |
90 | LI Wenlin, LI Feng, WANG Hongyan, et al. Hierarchical mesoporous ZSM-5 supported nickel catalyst for the catalytic hydrodeoxygenation of anisole to cyclohexane[J]. Molecular Catalysis, 2020, 480: 110642. |
91 | WANG Quanhua, ZHANG Lichen, YAO Zhenjiang, et al. Synthesis of loosely aggregating polycrystalline ZSM-5 with luxuriant mesopore structure and its hierarchically cracking for bulky reactants[J]. Materials Chemistry and Physics, 2020, 243: 122610. |
92 | Agnieszka FELICZAK-GUZIK. Hierarchical zeolites: Synthesis and catalytic properties[J]. Microporous and Mesoporous Materials, 2018, 259: 33-45. |
93 | JIA Xicheng, KHAN Wasim, WU Zhijie, et al. Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategies[J]. Advanced Powder Technology, 2019, 30(3): 467-484. |
94 | QIN Zhengxing, PINARD Ludovic, BENGHALEM Mohammed Amine, et al. Preparation of single-crystal “house-of-cards” -like ZSM-5 and their performance in ethanol-to-hydrocarbon conversion[J]. Chemistry of Materials, 2019, 31(13): 4639-4648. |
95 | SHEN Yanfeng, QIN Zhengxing, ASAHINA Shunsuke, et al. The inner heterogeneity of ZSM-5 zeolite crystals[J]. Journal of Materials Chemistry A, 2021, 9(7): 4203-4212. |
96 | ONFROY T, QIN Z, CASALE S, et al. Optimization of ammonium fluoride route to hierarchical ZSM-5 zeolites[J]. Microporous and Mesoporous Materials, 2023, 362: 112760. |
97 | TAN Wei, LIU Min, ZHAO Yan, et al. Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: Synergistic effects of surface modifications with SiO2, P2O5 and MgO[J]. Microporous and Mesoporous Materials, 2014, 196: 18-30. |
98 | MIAO Lei, HONG Zhe, ZHAO Guoqing, et al. Mo-Modified ZSM-5 zeolite with intergrowth crystals for high-efficiency catalytic xylene isomerization[J]. Catalysis Science & Technology, 2021, 11(14): 4831-4837. |
99 | ZHANG Jian, WANG Liang, WU Zhiyi, et al. Solvent-free synthesis of core-shell Zn/ZSM-5@Silicalite-1 catalyst for selective conversion of methanol to BTX aromatics[J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15453-15458. |
100 | FU Dongdong, ERIK MARIS J J, STANCIAKOVA Katarina, et al. Unravelling channel structure-diffusivity relationships in zeolite ZSM-5 at the single-molecule level[J]. Angewandte Chemie International Edition, 2022, 61(5): e202114388. |
101 | ALIPOUR Shayan Miar. Recent advances in naphtha catalytic cracking by nano ZSM-5: A review[J]. Chinese Journal of Catalysis, 2016, 37(5): 671-680. |
102 | ROWNAGHI Ali A, REZAEI Fateme, HEDLUND Jonas. Selective formation of light olefin by n-hexane cracking over HZSM-5: Influence of crystal size and acid sites of nano- and micrometer-sized crystals[J]. Chemical Engineering Journal, 2012, 191: 528-533. |
103 | YANG Lingzhi, LIU Zhiyuan, LIU Zhi, et al. Correlation between H-ZSM-5 crystal size and catalytic performance in the methanol-to-aromatics reaction[J]. Chinese Journal of Catalysis, 2017, 38(4): 683-690. |
104 | SOLTANALI Saeed, HALLADJ Rouein, RASHIDI Alimorad, et al. The effect of HZSM-5 catalyst particle size on kinetic models of methanol to gasoline conversion[J]. Chemical Engineering Research and Design, 2016, 106: 33-42. |
105 | LIU Xiaoliang, SHI Jing, YANG Guang, et al. A diffusion anisotropy descriptor links morphology effects of H-ZSM-5 zeolites to their catalytic cracking performance[J]. Communications Chemistry, 2021, 4: 107. |
106 | GAO Mingbin, LI Hua, YANG Miao, et al. Direct quantification of surface barriers for mass transfer in nanoporous crystalline materials[J]. Communications Chemistry, 2019, 2: 43. |
107 | SHI Jing, ZHAO Guoliang, TENG Jiawei, et al. Morphology control of ZSM-5 zeolites and their application in cracking reaction of C4 olefin[J]. Inorganic Chemistry Frontiers, 2018, 5(11): 2734-2738. |
108 | HEDLUND Jonas, ZHOU Ming, FAISAL Abrar, et al. Controlling diffusion resistance, selectivity and deactivation of ZSM-5 catalysts by crystal thickness and defects[J]. Journal of Catalysis, 2022, 410: 320-332. |
109 | GROEN Johan C, ZHU Weidong, BROUWER Sander, et al. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. Chem Inform, 2007, 129(2):355-360. |
110 | MEUNIER Frederic C, VERBOEKEND Danny, GILSON Jean-Pierre, et al. Influence of crystal size and probe molecule on diffusion in hierarchical ZSM-5 zeolites prepared by desilication[J]. Microporous and Mesoporous Materials, 2012, 148(1): 115-121. |
111 | SUN Minghui, ZHOU Jian, HU Zhiyi, et al. Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency[J]. Matter, 2020, 3(4): 1226-1245. |
112 | LIU Yinghao, ZHANG Qiang, LI Junyan, et al. Protozeolite-seeded synthesis of single-crystalline hierarchical zeolites with facet-shaped mesopores and their catalytic application in methanol-to-propylene conversion[J]. Angewandte Chemie International Edition, 2022, 61(34): e202205716. |
113 | YUAN Haoran, LI Chengyu, SHAN Rui, et al. Recent developments on the zeolites catalyzed polyolefin plastics pyrolysis[J]. Fuel Processing Technology, 2022, 238: 107531. |
114 | DAI Weijiong, ZHANG Lina, LIU Runze, et al. Plate-like ZSM-5 zeolites as robust catalysts for the cracking of hydrocarbons[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11415-11424. |
115 | IMYEN Thidarat, WANNAPAKDEE Wannaruedee, LIMTRAKUL Jumras, et al. Role of hierarchical micro-mesoporous structure of ZSM-5 derived from an embedded nanocarbon cluster synthesis approach in isomerization of alkenes, catalytic cracking and hydrocracking of alkanes[J]. Fuel, 2019, 254: 115593. |
116 | ESCHENBACHER Andreas, GOODARZI Farnoosh, VARGHESE Robin John, et al. Boron-modified mesoporous ZSM-5 for the conversion of pyrolysis vapors from LDPE and mixed polyolefins: Maximizing the C2-C4 olefin yield with minimal carbon footprint[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(43): 14618-14630. |
117 | HOFF Thomas C, GARDNER David W, THILAKARATNE Rajeeva, et al. Elucidating the effect of desilication on aluminum-rich ZSM-5 zeolite and its consequences on biomass catalytic fast pyrolysis[J]. Applied Catalysis A: General, 2017, 529: 68-78. |
118 | DUSSELIER Michiel, DAVIS Mark E. Small-pore zeolites: Synthesis and catalysis[J]. Chemical Reviews, 2018, 118(11): 5265-5329. |
119 | SUN Yu, MA Tong, CAO Shiwei, et al. Defective sites in ZSM-5 zeolite synthesized by n-butylamine template facilitating uniform meso-microporosity by alkali-treatment[J]. Microporous and Mesoporous Materials, 2021, 326: 111360. |
120 | MEDEIROS-COSTA Izabel C, Eddy DIB, NESTERENKO Nikolai, et al. Silanol defect engineering and healing in zeolites: Opportunities to fine-tune their properties and performances[J]. Chemical Society Reviews, 2021, 50(19): 11156-11179. |
121 | Ana PALČIĆ, MOLDOVAN Simona, SIBLANI Hussein EL, et al. Defect sites in zeolites: Origin and healing[J]. Advanced Science, 2022, 9(4): e2104414. |
122 | GEHRING Barbara, TRAA Yvonne, HUNGER Michael. Elucidation of the versatile Brønsted acidity of nanosized ZSM-5 materials[J]. Microporous and Mesoporous Materials, 2021, 317: 110978. |
123 | FICKEL Dustin W, SHOUGH Anne Marie, DOREN Douglas J, et al. High-temperature dehydrogenation of defective silicalites[J]. Microporous and Mesoporous Materials, 2010, 129(1/2): 156-163. |
124 | FRONTERA P, MACARIO A, ALOISE A, et al. Catalytic dry-reforming on Ni-zeolite supported catalyst[J]. Catalysis Today, 2012, 179(1): 52-60. |
125 | IYOKI Kenta, KIKUMASA Kakeru, ONISHI Takako, et al. Extremely stable zeolites developed via designed liquid-mediated treatment[J]. Journal of the American Chemical Society, 2020, 142(8): 3931-3938. |
126 | KONNOV Stanislav V, DUBRAY Florent, CLATWORTHY Edwin B, et al. Novel strategy for the synthesis of ultra-stable single-site Mo-ZSM-5 zeolite nanocrystals[J]. Angewandte Chemie International Edition, 2020, 59(44): 19553-19560. |
127 | LI Junjie, LIU Min, GUO Xinwen, et al. In situ aluminum migration into zeolite framework during methanol-to-propylene reaction: An innovation to design superior catalysts[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8190-8199. |
128 | VAYSSILOV Georgi N, ALEKSANDROV Hristiyan A, Eddy DIB, et al. Superacidity and spectral signatures of hydroxyl groups in zeolites[J]. Microporous and Mesoporous Materials, 2022, 343: 112144. |
129 | ZHANG Jiaoyu, ZHU Xiaolin, WANG Guowei, et al. The origin of the activity and selectivity of silicalite-1 zeolite for toluene methylation to para-xylene[J]. Chemical Engineering Journal, 2017, 327: 278-285. |
130 | FU Tingjun, JIA Lihan, LI Caiyan, et al. Silanol nests-enriched silicalite-1 zeolite catalyst for efficient toluene alkylation with methanol to para-xylene[J]. Chemical Engineering Journal, 2023, 474: 145768. |
131 | GRAHN Mattias, FAISAL Abrar, ÖHRMAN Olov G W, et al. Small ZSM-5 crystals with low defect density as an effective catalyst for conversion of methanol to hydrocarbons[J]. Catalysis Today, 2020, 345: 136-146. |
[1] | ZHANG Tiantian, LIU Xia, ZHANG Hongfei, LI Qian, ZHOU Hongyu, LI Binglin. Green biosynthesis of docosahexaenoic acid-rich phosphatidylserine in solvent-free system [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1033-1041. |
[2] | DONG Jiatong, SHAN Mengqing, WANG Hua. Improved electrocatalytic CO2 reduction to ethanol by Au-CuO/Cu2O catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 277-285. |
[3] | LIU Wei, ZHANG Min, ZHU Zhaoqi, WANG Yi, LIANG Weidong, SUN Hanxue. Preparation and current applications of black titanium dioxide nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 341-353. |
[4] | JIANG Liping, ZHANG Xueqiao, ZHONG Xiaojuan, WEI Yufan, XIAO Li, GUO Xujing, YANG Yijin. Optimization of acid leaching process of iron from vanadium slag and preparation of composite photocatalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 538-548. |
[5] | HE Ran, LIANG Hong, HUANG Hong, YANG Youli, ZHENG Qiang, LI Xi. Preparation of acetylene black/Fe3O4 catalysed cathodic electrode and removal of 2,4,6-trichlorophenol by electro-Fenton oxidation [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 572-582. |
[6] | LIN Meijie, MI Shuodong, BAO Cheng. Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 209-224. |
[7] | LI Shuaizhe, NIE Yichen, PHIDJAVARD Keomeesay, GU Wen, ZHANG Wei, LIU Na, XU Gaoxiang, LIU Ying, LI Xingyong, CHEN Yubao. Research progress on non-precious metal-catalyzed hydrogenation and deoxygenation of biomass to produce hydrocarbon-based biofuels [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 225-242. |
[8] | ZHANG Hao, LIU Shiyu, SHEN Weihua, FANG Yunjin. Dehydration of urea to cyanamide with Ca-ZSM-5 [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 365-373. |
[9] | WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. |
[10] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
[11] | ZHANG Yesu, QUAN Yanhong, DING Xinxin, REN Jun. Synthesis and application of chainlike MFI type zeolites [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4382-4392. |
[12] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
[13] | WANG Yufei, JIA Yu, ZHANG Yisheng, XUE Wei, LI Fang, WANG Yanji. Synthesis of p-aminophenol by transfer hydrogenation of nitrobenzene using formic acid as hydrogen source [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4421-4431. |
[14] | REN Guoyu, TUO Yun, ZHENG Wenjie, QIAO Zeting, REN Zhuangzhuang, ZHAO Yali, SHANG Junfei, CHEN Xiaodong, GAO Xianghu. Research progress and application of superhydrophobic nano-coating technology [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463. |
[15] | MAO Huakai, YU Yang, ZHANG Yue, XIA Guangkun, WU Yuntao, LOU Leyao, NIU Wenjuan, LIU Nian. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 64
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |