Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4757-4765.DOI: 10.16085/j.issn.1000-6613.2023-1190
• Resources and environmental engineering • Previous Articles
MAO Huakai1(), YU Yang1, ZHANG Yue1, XIA Guangkun1, WU Yuntao1, LOU Leyao1, NIU Wenjuan1,2,3, LIU Nian1,2,3()
Received:
2023-07-13
Revised:
2023-09-07
Online:
2024-09-02
Published:
2024-08-15
Contact:
LIU Nian
毛华恺1(), 余洋1, 张悦1, 夏广坤1, 吴赟韬1, 楼乐瑶1, 牛文娟1,2,3, 刘念1,2,3()
通讯作者:
刘念
作者简介:
毛华恺,(2002—),男,本科生,研究方向为种养废水光催化降解。E-mail:mhk@webmail.hzau.edu.cn。
基金资助:
CLC Number:
MAO Huakai, YU Yang, ZHANG Yue, XIA Guangkun, WU Yuntao, LOU Leyao, NIU Wenjuan, LIU Nian. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765.
毛华恺, 余洋, 张悦, 夏广坤, 吴赟韬, 楼乐瑶, 牛文娟, 刘念. 生物炭光催化氧化-吸附协同降解亚硝酸盐[J]. 化工进展, 2024, 43(8): 4757-4765.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1190
元素组成 | 质量分数/% |
---|---|
C | 42.72 |
H | 2.58 |
O | 47.79 |
N | 1.20 |
S | 0.55 |
K | 1.43 |
Ca | 0.57 |
Mg | 0.78 |
元素组成 | 质量分数/% |
---|---|
C | 42.72 |
H | 2.58 |
O | 47.79 |
N | 1.20 |
S | 0.55 |
K | 1.43 |
Ca | 0.57 |
Mg | 0.78 |
水平 | α/mg·L-1 | β/g | γ/℃ | δ | ε/min |
---|---|---|---|---|---|
1 | 0.6 | 0.2 | 25 | 2 | 20 |
2 | 1.8 | 0.4 | 30 | 4 | 60 |
3 | 5.4 | 0.6 | 35 | 6 | 100 |
4 | 16.2 | 0.8 | 40 | 8 | 140 |
5 | 48.6 | 1.0 | 45 | 10 | 180 |
水平 | α/mg·L-1 | β/g | γ/℃ | δ | ε/min |
---|---|---|---|---|---|
1 | 0.6 | 0.2 | 25 | 2 | 20 |
2 | 1.8 | 0.4 | 30 | 4 | 60 |
3 | 5.4 | 0.6 | 35 | 6 | 100 |
4 | 16.2 | 0.8 | 40 | 8 | 140 |
5 | 48.6 | 1.0 | 45 | 10 | 180 |
试验组 | 编号 | L | A | B | pH | 酸碱度 |
---|---|---|---|---|---|---|
LABO | LABO1 | √ | √ | √ | 3 | 强酸 |
LABO | LABO2 | √ | √ | √ | 6.5 | 弱酸 |
LABO | LABO3 | √ | √ | √ | 7 | 中性 |
LABO | LABO4 | √ | √ | √ | 7.5 | 弱碱 |
LABO | LABO5 | √ | √ | √ | 9 | 强碱 |
ABO | ABO1 | × | √ | √ | 3 | 强酸 |
ABO | ABO2 | × | √ | √ | 6.5 | 弱酸 |
ABO | ABO3 | × | √ | √ | 7 | 中性 |
ABO | ABO4 | × | √ | √ | 7.5 | 弱碱 |
ABO | ABO5 | × | √ | √ | 9 | 强碱 |
LBO | LBO1 | √ | × | √ | 3 | 强酸 |
LBO | LBO2 | √ | × | √ | 6.5 | 弱酸 |
LBO | LBO3 | √ | × | √ | 7 | 中性 |
LBO | LBO4 | √ | × | √ | 7.5 | 弱碱 |
LBO | LBO5 | √ | × | √ | 9 | 强碱 |
LAO | LAO1 | √ | √ | × | 3 | 强酸 |
LAO | LAO2 | √ | √ | × | 6.5 | 弱酸 |
LAO | LAO3 | √ | √ | × | 7 | 中性 |
LAO | LAO4 | √ | √ | × | 7.5 | 弱碱 |
LAO | LAO5 | √ | √ | × | 9 | 强碱 |
BO | BO1 | × | × | √ | 3 | 强酸 |
BO | BO2 | × | × | √ | 6.5 | 弱酸 |
BO | BO3 | × | × | √ | 7 | 中性 |
BO | BO4 | × | × | √ | 7.5 | 弱碱 |
BO | BO5 | × | × | √ | 9 | 强碱 |
AO | AO1 | × | √ | × | 3 | 强酸 |
AO | AO2 | × | √ | × | 6.5 | 弱酸 |
AO | AO3 | × | √ | × | 7 | 中性 |
AO | AO4 | × | √ | × | 7.5 | 弱碱 |
AO | AO5 | × | √ | × | 9 | 强碱 |
LO | LO1 | √ | × | × | 3 | 强酸 |
LO | LO2 | √ | × | × | 6.5 | 弱酸 |
LO | LO3 | √ | × | × | 7 | 中性 |
LO | LO4 | √ | × | × | 7.5 | 弱碱 |
LO | LO5 | √ | × | × | 9 | 强碱 |
O | O1 | × | × | × | 3 | 强酸 |
O | O2 | × | × | × | 6.5 | 弱酸 |
O | O3 | × | × | × | 7 | 中性 |
O | O4 | × | × | × | 7.5 | 弱碱 |
O | O5 | × | × | × | 9 | 强碱 |
试验组 | 编号 | L | A | B | pH | 酸碱度 |
---|---|---|---|---|---|---|
LABO | LABO1 | √ | √ | √ | 3 | 强酸 |
LABO | LABO2 | √ | √ | √ | 6.5 | 弱酸 |
LABO | LABO3 | √ | √ | √ | 7 | 中性 |
LABO | LABO4 | √ | √ | √ | 7.5 | 弱碱 |
LABO | LABO5 | √ | √ | √ | 9 | 强碱 |
ABO | ABO1 | × | √ | √ | 3 | 强酸 |
ABO | ABO2 | × | √ | √ | 6.5 | 弱酸 |
ABO | ABO3 | × | √ | √ | 7 | 中性 |
ABO | ABO4 | × | √ | √ | 7.5 | 弱碱 |
ABO | ABO5 | × | √ | √ | 9 | 强碱 |
LBO | LBO1 | √ | × | √ | 3 | 强酸 |
LBO | LBO2 | √ | × | √ | 6.5 | 弱酸 |
LBO | LBO3 | √ | × | √ | 7 | 中性 |
LBO | LBO4 | √ | × | √ | 7.5 | 弱碱 |
LBO | LBO5 | √ | × | √ | 9 | 强碱 |
LAO | LAO1 | √ | √ | × | 3 | 强酸 |
LAO | LAO2 | √ | √ | × | 6.5 | 弱酸 |
LAO | LAO3 | √ | √ | × | 7 | 中性 |
LAO | LAO4 | √ | √ | × | 7.5 | 弱碱 |
LAO | LAO5 | √ | √ | × | 9 | 强碱 |
BO | BO1 | × | × | √ | 3 | 强酸 |
BO | BO2 | × | × | √ | 6.5 | 弱酸 |
BO | BO3 | × | × | √ | 7 | 中性 |
BO | BO4 | × | × | √ | 7.5 | 弱碱 |
BO | BO5 | × | × | √ | 9 | 强碱 |
AO | AO1 | × | √ | × | 3 | 强酸 |
AO | AO2 | × | √ | × | 6.5 | 弱酸 |
AO | AO3 | × | √ | × | 7 | 中性 |
AO | AO4 | × | √ | × | 7.5 | 弱碱 |
AO | AO5 | × | √ | × | 9 | 强碱 |
LO | LO1 | √ | × | × | 3 | 强酸 |
LO | LO2 | √ | × | × | 6.5 | 弱酸 |
LO | LO3 | √ | × | × | 7 | 中性 |
LO | LO4 | √ | × | × | 7.5 | 弱碱 |
LO | LO5 | √ | × | × | 9 | 强碱 |
O | O1 | × | × | × | 3 | 强酸 |
O | O2 | × | × | × | 6.5 | 弱酸 |
O | O3 | × | × | × | 7 | 中性 |
O | O4 | × | × | × | 7.5 | 弱碱 |
O | O5 | × | × | × | 9 | 强碱 |
误差源 | SS | df | MS | F | 显著性 |
---|---|---|---|---|---|
α | 2275.34 | 4 | 568.84 | 1.51 | - |
β | 8851.34 | 4 | 2212.84 | 5.87 | - |
γ | 12785.26 | 4 | 3196.31 | 8.48 | ** |
δ | 14891.02 | 4 | 3722.75 | 9.88 | ** |
ε | 3113.10 | 4 | 778.28 | 2.06 | - |
空列 | 10879.21 | 4 | 2719.80 | 7.22 | - |
误差 | 10922.71 | 25 | 376.65 | — | — |
总和 | 52825.84 | 49 | — | — | — |
误差源 | SS | df | MS | F | 显著性 |
---|---|---|---|---|---|
α | 2275.34 | 4 | 568.84 | 1.51 | - |
β | 8851.34 | 4 | 2212.84 | 5.87 | - |
γ | 12785.26 | 4 | 3196.31 | 8.48 | ** |
δ | 14891.02 | 4 | 3722.75 | 9.88 | ** |
ε | 3113.10 | 4 | 778.28 | 2.06 | - |
空列 | 10879.21 | 4 | 2719.80 | 7.22 | - |
误差 | 10922.71 | 25 | 376.65 | — | — |
总和 | 52825.84 | 49 | — | — | — |
实验 | α/mg·L-1 | β/g | γ/℃ | δ | ε/min | ζ(空列) | η/% | 标准偏差 |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.2 | 25 | 2 | 20 | 1 | 42.50 | 0.000 |
2 | 0.6 | 0.4 | 30 | 4 | 60 | 2 | 54.00 | 0.000 |
3 | 0.6 | 0.6 | 35 | 6 | 100 | 3 | 29.85 | 0.017 |
4 | 0.6 | 0.8 | 40 | 8 | 140 | 4 | 30.14 | 0.014 |
5 | 0.6 | 1.0 | 45 | 10 | 180 | 5 | 78.87 | 0.004 |
6 | 1.8 | 0.2 | 30 | 6 | 140 | 5 | 76.11 | 0.010 |
7 | 1.8 | 0.4 | 35 | 8 | 180 | 1 | 10.16 | 0.006 |
8 | 1.8 | 0.6 | 40 | 10 | 20 | 2 | 79.88 | 0.007 |
9 | 1.8 | 0.8 | 45 | 2 | 60 | 3 | 80.55 | 0.005 |
10 | 1.8 | 1.0 | 25 | 1 | 100 | 4 | 42.50 | 0.000 |
11 | 5.4 | 0.2 | 35 | 10 | 60 | 4 | 6.62 | 0.019 |
12 | 5.4 | 0.4 | 40 | 2 | 100 | 5 | 91.06 | 0.003 |
13 | 5.4 | 0.6 | 45 | 4 | 140 | 1 | 1.77 | 0.011 |
14 | 5.4 | 0.8 | 25 | 6 | 180 | 2 | 68.06 | 0.000 |
15 | 5.4 | 1.0 | 30 | 8 | 20 | 3 | 34.51 | 0.016 |
16 | 16.2 | 0.2 | 40 | 4 | 180 | 3 | 5.23 | 0.005 |
17 | 16.2 | 0.4 | 45 | 6 | 20 | 4 | 65.78 | 0.011 |
18 | 16.2 | 0.6 | 25 | 8 | 60 | 5 | 97.93 | 0.001 |
19 | 16.2 | 0.8 | 30 | 10 | 100 | 1 | 0.97 | 0.009 |
20 | 16.2 | 1.0 | 35 | 2 | 140 | 2 | 49.14 | 0.001 |
21 | 48.6 | 0.2 | 45 | 8 | 100 | 2 | 17.38 | 0.004 |
22 | 48.6 | 0.4 | 25 | 10 | 140 | 3 | 95.78 | 0.000 |
23 | 48.6 | 0.6 | 30 | 2 | 180 | 4 | 91.77 | 0.002 |
24 | 48.6 | 0.8 | 35 | 4 | 20 | 5 | 6.42 | 0.023 |
25 | 48.6 | 1.0 | 40 | 6 | 60 | 1 | 65.34 | 0.000 |
实验 | α/mg·L-1 | β/g | γ/℃ | δ | ε/min | ζ(空列) | η/% | 标准偏差 |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.2 | 25 | 2 | 20 | 1 | 42.50 | 0.000 |
2 | 0.6 | 0.4 | 30 | 4 | 60 | 2 | 54.00 | 0.000 |
3 | 0.6 | 0.6 | 35 | 6 | 100 | 3 | 29.85 | 0.017 |
4 | 0.6 | 0.8 | 40 | 8 | 140 | 4 | 30.14 | 0.014 |
5 | 0.6 | 1.0 | 45 | 10 | 180 | 5 | 78.87 | 0.004 |
6 | 1.8 | 0.2 | 30 | 6 | 140 | 5 | 76.11 | 0.010 |
7 | 1.8 | 0.4 | 35 | 8 | 180 | 1 | 10.16 | 0.006 |
8 | 1.8 | 0.6 | 40 | 10 | 20 | 2 | 79.88 | 0.007 |
9 | 1.8 | 0.8 | 45 | 2 | 60 | 3 | 80.55 | 0.005 |
10 | 1.8 | 1.0 | 25 | 1 | 100 | 4 | 42.50 | 0.000 |
11 | 5.4 | 0.2 | 35 | 10 | 60 | 4 | 6.62 | 0.019 |
12 | 5.4 | 0.4 | 40 | 2 | 100 | 5 | 91.06 | 0.003 |
13 | 5.4 | 0.6 | 45 | 4 | 140 | 1 | 1.77 | 0.011 |
14 | 5.4 | 0.8 | 25 | 6 | 180 | 2 | 68.06 | 0.000 |
15 | 5.4 | 1.0 | 30 | 8 | 20 | 3 | 34.51 | 0.016 |
16 | 16.2 | 0.2 | 40 | 4 | 180 | 3 | 5.23 | 0.005 |
17 | 16.2 | 0.4 | 45 | 6 | 20 | 4 | 65.78 | 0.011 |
18 | 16.2 | 0.6 | 25 | 8 | 60 | 5 | 97.93 | 0.001 |
19 | 16.2 | 0.8 | 30 | 10 | 100 | 1 | 0.97 | 0.009 |
20 | 16.2 | 1.0 | 35 | 2 | 140 | 2 | 49.14 | 0.001 |
21 | 48.6 | 0.2 | 45 | 8 | 100 | 2 | 17.38 | 0.004 |
22 | 48.6 | 0.4 | 25 | 10 | 140 | 3 | 95.78 | 0.000 |
23 | 48.6 | 0.6 | 30 | 2 | 180 | 4 | 91.77 | 0.002 |
24 | 48.6 | 0.8 | 35 | 4 | 20 | 5 | 6.42 | 0.023 |
25 | 48.6 | 1.0 | 40 | 6 | 60 | 1 | 65.34 | 0.000 |
参数 | α | β | γ | δ | ε | ζ |
---|---|---|---|---|---|---|
K1 | 235.36 | 147.83 | 346.77 | 355.01 | 235.36 | 120.74 |
K2 | 289.18 | 316.77 | 257.36 | 109.92 | 289.18 | 268.46 |
K3 | 202.01 | 301.20 | 102.19 | 305.13 | 202.01 | 245.92 |
K4 | 219.06 | 186.13 | 271.64 | 190.12 | 219.06 | 236.80 |
K5 | 276.68 | 270.37 | 244.34 | 262.11 | 276.68 | 350.39 |
R | 87.17 | 168.93 | 244.58 | 245.09 | 122.68 | 229.65 |
参数 | α | β | γ | δ | ε | ζ |
---|---|---|---|---|---|---|
K1 | 235.36 | 147.83 | 346.77 | 355.01 | 235.36 | 120.74 |
K2 | 289.18 | 316.77 | 257.36 | 109.92 | 289.18 | 268.46 |
K3 | 202.01 | 301.20 | 102.19 | 305.13 | 202.01 | 245.92 |
K4 | 219.06 | 186.13 | 271.64 | 190.12 | 219.06 | 236.80 |
K5 | 276.68 | 270.37 | 244.34 | 262.11 | 276.68 | 350.39 |
R | 87.17 | 168.93 | 244.58 | 245.09 | 122.68 | 229.65 |
1 | BASAK Bikram, BHUNIA Biswanath, DUTTA Subhasish, et al. Enhanced biodegradation of 4-chlorophenol by Candida tropicalis PHB5 via optimization of physicochemical parameters using Taguchi orthogonal array approach[J]. International Biodeterioration & Biodegradation, 2013, 78: 17-23. |
2 | AMORIM Camila C, LEÃO Mônica M D, MOREIRA Regina F P M, et al. Performance of blast furnace waste for azo dye degradation through photo-Fenton-like processes[J]. Chemical Engineering Journal, 2013, 224(1): 59-66. |
3 | 于兵川, 吴洪特, 张万忠. 光催化纳米材料在环境保护中的应用[J]. 石油化工, 2005, 34(5): 491-495. |
YU Bingchuan, WU Hongte, ZHANG Wanzhong. Application of nano-photocatalysts in environmental protection[J]. Petrochemical Technology, 2005, 34(5): 491-495. | |
4 | WANG Hao, WANG Jing, XIANG Xin, et al. Preparation of PVDF/CdS/Bi2WO6/ZnO hybrid membrane with enhanced visible-light photocatalytic activity for degrading nitrite in water[J]. Environmental Research, 2020, 191: 110036. |
5 | BOUKHEMIKHEM Z, REKHILA G, BRAHIMI R, et al. Photocatalytic NO2-oxidation on the hetero-junction Ag(5%)/NiFe2O4 prepared by sol gel route[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 394: 112454. |
6 | FU Dongying, HAN Gaoyi, CHANG Yunzhen, et al. The synthesis and properties of ZnO-graphene nano hybrid for photodegradation of organic pollutant in water[J]. Materials Chemistry and Physics, 2012, 132(2/3): 673-681. |
7 | 魏宏斌, 徐迪民. 固定相TiO2膜的制备及其光催化活性[J]. 中国给水排水, 2002, 18(7): 57-59. |
WEI Hongbin, XU Dimin. Preparation and photocatalytic activity of fixed phase TiO2 film[J]. China Water & Wastewater, 2002,18(7): 57-59. | |
8 | ZHANG Lei, JIANG Daochuan, IRFAN Rana Muhammad, et al. Highly efficient and selective photocatalytic dehydrogenation of benzyl alcohol for simultaneous hydrogen and benzaldehyde production over Ni-decorated Zn0.5Cd0.5S solid solution[J]. Journal of Energy Chemistry, 2019, 30(3): 71-77. |
9 | LI Xin, LIN Jing, ZHANG Di, et al. Material flow analysis of titanium dioxide and sustainable policy suggestion in China[J]. Resources Policy, 2020, 67: 101685. |
10 | SAJAN Chimmikuttanda Ponnappa, WAGEH Swelm, AL-GHAMDI Ahmed A, et al. TiO2 nanosheets with exposed {001} facets for photocatalytic applications[J]. Nano Research, 2016, 9(1): 3-27. |
11 | LU Haiqiang, ZHAO Jianghong, LI Li, et al. Selective oxidation of sacrificial ethanol over TiO2-based photocatalysts during water splitting[J]. Energy & Environmental Science, 2011, 4(9): 3384-3388. |
12 | YASUDA Masahide, MATSUMOTO Tomoko, YAMASHITA Toshiaki. Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1627-1635. |
13 | TESTA Juan J, GRELA María A, LITTER Marta I. Heterogeneous photocatalytic reduction of chromium(Ⅵ) over TiO2 particles in the presence of oxalate: Involvement of Cr(Ⅴ) species[J]. Environmental Science & Technology, 2004, 38(5): 1589-1594. |
14 | 陈杰, 肖玉婷, 汪楠, 等. 简易合成具有增强电荷转移的Z型CeO2/C3N4异质结用于光催化CO2还原[J]. Science China Materials, 2023, 66(8): 3165-3175. |
CHEN Jie, XIAO Yuting, WANG Nan, et al. Facile synthesis of a Z-scheme CeO2/C3N4 heterojunction with enhanced charge transfer for CO2 photoreduction[J]. Science China Materials, 2023, 66(8): 3165-3175. | |
15 | LUO Jinhua, WU Yaohui, JIANG Mengzhu, et al. Novel ZnFe2O4/BC/ZnO photocatalyst for high-efficiency degradation of tetracycline under visible light irradiation[J]. Chemosphere, 2023, 311(1): 137041. |
16 | XIA Qi, HUANG Binbin, YUAN Xingzhong, et al. Modified stannous sulfide nanoparticles with metal-organic framework: Toward efficient and enhanced photocatalytic reduction of chromium (Ⅵ) under visible light[J]. Journal of Colloid and Interface Science, 2018, 530: 481-492. |
17 | DJELLABI Ridha, YANG Bo, WANG Yan, et al. Carbonaceous biomass-titania composites with TiOC bonding bridge for efficient photocatalytic reduction of Cr(Ⅵ) under narrow visible light[J]. Chemical Engineering Journal, 2019, 366: 172-180. |
18 | Dinh Ngoc Giao NGO, CHUANG Xiangying, HUANG Chin-Pao, et al. Compositional characterization of nine agricultural waste biochars: The relations between alkaline metals and cation exchange capacity with ammonium adsorption capability[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110003. |
19 | HUFF Matthew D, LEE James W. Biochar-surface oxygenation with hydrogen peroxide[J]. Journal of Environmental Management, 2016, 165: 17-21. |
20 | LIU Yurong, PASKEVICIUS Mark, Veronica SOFIANOS M, et al. A SAXS study of the pore structure evolution in biochar during gasification in H2O, CO2 and H2O/CO2 [J]. Fuel, 2021, 292: 120384. |
21 | 周石洋, 陈玲. 食品中亚硝酸盐含量测定的研究[J]. 食品安全质量检测学报, 2011, 2(6): 285-289. |
ZHOU Shiyang, CHEN Ling. Study on the determination of nitrite in food[J]. Journal of Food Safety & Quality, 2011, 2(6): 285-289. | |
22 | 中华人民共和国自然资源部. 地下水质分析方法 硝酸盐的测定紫外分光光度法: [S]. 北京: 中国标准出版社, 2021. |
Ministry of Natural Resources of the People’s Republic of China. Analysis methods for groundwater quality—Determination of nitrate ultraviolet spectrophotometric method: [S]. Beijing: Standards Press of China, 2021. | |
23 | 栗秀萍, 于洋, 何旺, 等. 超重力强化AMP-PZ复合溶液脱碳技术及表观动力学[J]. 化工进展, 2022, 41(S1): 22-28. |
LI Xiuping, YU Yang, HE Wang, et al. High-gravity intensified decarburization process and apparent kinetics of AMP-PZ composite solution[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 22-28. | |
24 | 中本一雄, 黄德如. 无机和配位化合物的红外和拉曼光谱[M]. 北京: 化学工业出版社,1986. |
KAZUO Nakamoto, HUANG Deru. Inrared and Raman spectra of inorganic and coordination compounds[M]. Beijing: Chemical Industry Press, 1986. | |
25 | 黄安香, 杨定云, 杨守禄, 等. 改性生物炭对土壤重金属污染修复研究进展[J]. 化工进展, 2020, 39(12): 5266-5274. |
HUANG Anxiang, YANG Dingyun, YANG Shoulu, et al. Advance in remediation of heavy metal pollution in soil by modified biochar[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5266-5274. | |
26 | 宋江生, 管益东, 师杨杰, 等. 杨木基生物炭吸附去除水溶液中磺胺吡啶[J]. 净水技术, 2023, 42(7): 90-97. |
SONG Jiangsheng, GUAN Yidong, SHI Yangjie, et al. Poplar based biochars for adsorption and removal of sulfapyridine in aqueous solution[J]. Water Purification Technology, 2023, 42(7): 90-97. | |
27 | 钟来元, 廖荣骏, 刘付宇杰, 等. KOH改性花生壳生物炭对盐酸四环素的吸附性能及其机理[J]. 农业环境科学学报, 2023, 42(9): 2038-2048. |
ZHONG Laiyuan, LIAO Rongjun, LIUFU Yujie, et al. Adsorption of tetracycline hydrochloride by KOH modified peanut shell biochar and its mechanism[J]. Journal of Agro-Environment Science, 2023, 42(9): 2038-2048. | |
28 | 杨婷婷, 黄艳艳, 柳维扬, 等. 三种改性小麦秸秆生物炭表征及其对Cu2+的吸附性能[J]. 农业工程学报, 2023, 39(8): 222-230. |
YANG Tingting, HUANG Yanyan, LIU Weiyang, et al. Characterization of three kinds of modified wheat straw derived biochars and their sorption capacity for Cu2+ [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(8): 222-230. | |
29 | 王金玉, 王赛男, 卢佳宏, 等. 盐酸改性豆渣不溶性膳食纤维对亚硝酸盐的吸附特性及机理[J]. 大豆科学, 2022, 41(4): 463-471. |
WANG Jinyu, WANG Sainan, LU Jiahong, et al. Adsorption characteristics and mechanism of hydrochloric acid modified okara insoluble dietary fiber to nitrite[J]. Soybean Science, 2022, 41(4): 463-471. | |
30 | 庄远红, 刘静娜, 费鹏, 等. 模拟胃环境下柚皮果胶对亚硝酸根的吸附动力学[J]. 西南大学学报(自然科学版), 2018, 40(12): 65-72. |
ZHUANG Yuanhong, LIU Jingna, FEI Peng, et al. Adsorption kinetics of pectin from pomelo peelon nitrite in a simulated gastric environment[J]. Journal of Southwest University(Natural Science Edition), 2018, 40(12): 65-72. | |
31 | 吴丹萍, 陈全, 李东梅, 等. 生物炭含氧官能团的生成溯源及其在污染物吸附-降解过程中的作用[J]. 环境化学, 2021, 40(10): 3190-3198. |
WU Danping, CHEN Quan, LI Dongmei, et al. Traceability of oxygen-containing functional groups in biochars and their roles in the adsorption-degradation of contaminants[J]. Environmental Chemistry, 2021, 40(10): 3190-3198. | |
32 | 向欣. CdS/Bi2S3/Bi2MoO6光催化膜耦合芽孢杆菌协同降解亚硝酸盐[D]. 南宁: 广西大学, 2021. |
XIANG Xin. Synergistic Degradation of nitrite by CdS/Bi2S3/Bi2MoO6 photocatalytic membrane coupled bacillus[D]. Nanning: Guangxi University, 2021. | |
33 | GOMAA Hosam M, SAUDI H A, YAHIA I S, et al. Influence of graphene nanopowder impurities on the structural and optical properties of sodium borate copper-based glass: Towards UV/NIR shielding materials[J]. Solid State Sciences, 2022, 129: 106911. |
34 | 李法云, 李佳宇, 吝美霞, 等. 大豆秸秆生物炭负载石墨相氮化碳对土壤石油烃的光催化降解[J]. 应用基础与工程科学学报, 2022, 30(3): 519-529. |
LI Fayun, LI Jiayu, LIN Meixia, et al. Photocatalytic degradation of soil petroleum hydrocarbons by biochar supported graphite phase carbon nitride[J]. Journal of Basic Science and Engineering, 2022, 30(3): 519-529. | |
35 | 曹雪娟, 单柏林, 邓梅, 等. Fe掺杂g-C3N4光催化剂的制备及光催化性能研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(11): 52-57. |
CAO Xuejuan, SHAN Bailin, DENG Mei, et al. Preparation and photocatalytic properties of Fe-doped g-C3N4 photocatalyst[J]. Journal of Chongqing Jiaotong University(Natural Science), 2019, 38(11): 52-57. | |
36 | 高晓明, 付峰, 吕磊, 等. 光催化剂Cu-BiVO4的制备及其光催化降解含酚废水[J]. 化工进展, 2012, 31(5): 1039-1042, 1087. |
GAO Xiaoming, FU Feng, Lei LYU, et al. Preparation of Cu-BiVO4 photocatalyst and its application in the treatment of phenol-containing wastewater[J]. Chemical Industry and Engineering Progress, 2012, 31(5): 1039-1042, 1087. | |
37 | 王宏娟, 郑楠, 董晓丽. 碘掺杂氯氧化铋光催化剂的制备及性能[J]. 大连工业大学学报, 2020, 39(6): 419-423. |
WANG Hongjuan, ZHENG Nan, DONG Xiaoli. Preparation and properties of I-doped bismuth chloride oxide photocatalyst[J]. Journal of Dalian Polytechnic University, 2020, 39(6): 419-423. | |
38 | 李红亮, 张涛, 付贤军, 等. ZnO/g-C3N4复合光催化材料降解四环素研究[J]. 能源与环保, 2023, 45(8): 163-169. |
LI Hongliang, ZHANG Tao, FU Xianjun, et al. Study on degradation of tetracycline by ZnO/g-C3N4 composite photocatalytic materials[J]. China Energy and Environmental Protection, 2023, 45(8): 163-169. | |
39 | 赵文武, 周海静, 黄雁, 等. 稀土掺杂硼酸盐Bi2ZnB2O7∶xDy3+光催化剂的合成及其催化机理[J]. 化工进展, 2022, 41(11): 5843-5849. |
ZHAO Wenwu, ZHOU Haijing, HUANG Yan, et al. Photocatalytic mechanism and synthesis of rare earth doped borate Bi2ZnB2O7∶xDy3+ photocatalyst[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5843-5849. |
[1] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
[2] | WANG Jia, LI Wencui, WU Fan, GAO Xinqian, LU Anhui. Regulation active components distribution of NiMo/Al2O3 catalysts for hydrodesulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4393-4402. |
[3] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
[4] | ZHENG Yunxiang, GAO Yilun, LI Yanru, LIU Qinglin, ZHANG Haoteng, WANG Xiangpeng. Preparation and adsorption properties of porous double-network hydrogels modified by nitrilotriacetic acid anhydride [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4542-4549. |
[5] | ZHANG Xi, LI Haoxin, ZHANG Tianyang, LI Zifu, SUN Wenjun, AO Xiuwei. Degradation of per- and polyfluoroalkyl substances in water by UV-based advanced oxidation or advanced reduction processes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4587-4600. |
[6] | SONG Zhanlong, TANG Tao, PAN Wei, ZHAO Xiqiang, SUN Jing, MAO Yanpeng, WANG Wenlong. Micro-nano bubbles enhance ozone oxidation and degradation of wastewater containing phenol [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4614-4623. |
[7] | LIU Yucan, GAO Zhonglu, XU Xinyi, JI Xianguo, ZHANG Yan, SUN Hongwei, WANG Gang. Adsorption performance and mechanism of diuron from water by calcium-modified water hyacinth-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4630-4641. |
[8] | HU Junjie, HUANG Xingjun, LEI Cheng, YANG Min, LAN Yuanxiao, LUO Jianhong. Advanced treatment of small molecular organic in shale gas produced water [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4674-4680. |
[9] | GUO Changbin, LI Mengmeng, FENG Menghan, YUAN Tian, ZHANG Keqiang, LUO Yanli, WANG Feng. Preparation of Ce-doped La-based perovskite and its adsorption properties for phosphate and phytic acid in water [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4748-4756. |
[10] | BIAN Weibai, ZHANG Ruixuan, PAN Jianming. Research progress on preparation methods of inorganic metal lithium ion sieve materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4173-4186. |
[11] | LI Wenzhe, SHEN Miao, WANG Jianqiang. Research progress in the preparation of new two-dimensional layered metal carbon/nitrides by molten salt method [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3660-3671. |
[12] | HUANG Jun, ZHANG Yingjuan, LIN Yintong, WEI Xuechun, WU Yutong, WU Gaobo, MO Junlin, ZHAO Zhenxia, ZHAO Zhongxing. Preparation of silkworm excrement-based porous biocarbon and synergistic adsorption and slow-release performance for monosultap and dinotefuran [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3964-3971. |
[13] | YU Lishuang, LI Qingyun, LIU Zhaoming, ZHANG Shuru, LIU Youyan, TANG Aixing. Epoxidation of pinene catalyzed by lipase immobilized on rape pollen biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3996-4004. |
[14] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
[15] | HE Yixue, QIN Xianchao, MA Weifang. Research progress on in situ remediation of halogenated hydrocarbon contamination in groundwater by persulfate-based advanced oxidation process [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4072-4088. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |