Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4403-4410.DOI: 10.16085/j.issn.1000-6613.2023-1264
• Industrial catalysis • Previous Articles
FU Tao1(), LI Li2, GAO Lining2(), ZHU Fuwei3, CAO Weiye3, CHEN Huaxin2
Received:
2023-07-23
Revised:
2023-08-28
Online:
2024-09-02
Published:
2024-08-15
Contact:
GAO Lining
付涛1(), 李立2, 高莉宁2(), 朱富维3, 曹炜烨3, 陈华鑫2
通讯作者:
高莉宁
作者简介:
付涛(1982—),男,硕士,高级工程师。E-mail:25068124@qq.com。
基金资助:
CLC Number:
FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410.
付涛, 李立, 高莉宁, 朱富维, 曹炜烨, 陈华鑫. 水泥基硼掺杂石墨相氮化碳降解NO[J]. 化工进展, 2024, 43(8): 4403-4410.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1264
化学成分 | 质量分数/% |
---|---|
CaO | 62.21 |
SiO2 | 21.55 |
Al2O3 | 7.82 |
Fe2O3 | 4.51 |
SO3 | 2.11 |
MgO | 1.80 |
化学成分 | 质量分数/% |
---|---|
CaO | 62.21 |
SiO2 | 21.55 |
Al2O3 | 7.82 |
Fe2O3 | 4.51 |
SO3 | 2.11 |
MgO | 1.80 |
细度/% | 烧失量/% | 比表面积/m2·kg-1 |
---|---|---|
0.3 | 3.89 | 364 |
细度/% | 烧失量/% | 比表面积/m2·kg-1 |
---|---|---|
0.3 | 3.89 | 364 |
筛孔/mm | 通过率/% |
---|---|
2.36 | 0 |
4.75 | 6.5 |
9.50 | 85.7 |
13.00 | 100.0 |
筛孔/mm | 通过率/% |
---|---|
2.36 | 0 |
4.75 | 6.5 |
9.50 | 85.7 |
13.00 | 100.0 |
体积流量/L·min-1 | 光照强度/W | 相对湿度/% | 检测时间 |
---|---|---|---|
1 | 16 | 50 | 10min,共2h |
体积流量/L·min-1 | 光照强度/W | 相对湿度/% | 检测时间 |
---|---|---|---|
1 | 16 | 50 | 10min,共2h |
样品 | 比表面积/m2·g-1 |
---|---|
g-C3N4 | 4.8820 |
BCN | 5.7249 |
样品 | 比表面积/m2·g-1 |
---|---|
g-C3N4 | 4.8820 |
BCN | 5.7249 |
1 | 张征, 曹慧. 北京市汽车工业与城市环境关系的实证研究[J]. 中国软科学, 2004(11): 57-61. |
ZHANG Zheng, CAO Hui. Empirical analysis of relationship between auto industry and environment of Beijing city[J]. China Soft Science, 2004(11): 57-61. | |
2 | 中华人民共和国生态环境部. 中国移动源环境管理年报(2023年)[R/OL]. (2023-12-07). . |
Ministry of Ecology and Environment of the People’s Republic of China. China Mobile Environmental Management Annual Report (2023)[R/OL]. (2023-12-07). . | |
3 | 谢杰光, 匡亚川. 纳米TiO2光催化技术及其在降解汽车尾气中的应用[J]. 材料导报, 2012, 26(15): 141-145. |
XIE Jieguang, KUANG Yachuan. Photocatalysis technology of nano-TiO2 and its application in photodegradation of automobile exhaust[J]. Materials Review, 2012, 26(15): 141-145. | |
4 | 梁玉荣. 光催化降解汽车尾气路面材料应用研究[J]. 公路, 2020, 65(2): 279-282. |
LIANG Yurong. Study on application of photocatalytic degradation of automobile exhaust pavement materials[J]. Highway, 2020, 65(2): 279-282. | |
5 | 朱食丰, 王功勋, 邓静, 等. 纳米TiO2分散性对水泥水化和性能的影响[J]. 建筑材料学报, 2022, 25(8): 843-852. |
ZHU Shifeng, WANG Gongxun, DENG Jing, et al. Effect of nano-TiO2 dispersibility on the mechanics, hydration degree and microscopic properties of cement paste[J]. Journal of Building Materials, 2022, 25(8): 843-852. | |
6 | 李剑飞, 刘黎萍, 孙立军. 纳米二氧化钛对汽车尾气中碳氢化合物HC分解效果研究[J]. 公路工程, 2010, 35(2): 151-155. |
LI Jianfei, LIU Liping, SUN Lijun. Research on the decomposition efficiency of decomposition of hydrocarbon in exhaust gas from vehicles by nanometer titanium dioxide[J]. Highway Engineering, 2010, 35(2): 151-155. | |
7 | 董祥. 胶粉负载型路面尾气降解复合材料的路用性能[J]. 建筑材料学报, 2011, 14(6): 781-786. |
DONG Xiang. Pavement performances of composite material with rubber powder loading photocatalyst for pavement automobile exhaust degradation[J]. Journal of Building Materials, 2011, 14(6): 781-786. | |
8 | 梅军鹏, 徐智东, 李海南, 等. 蒸汽养护条件下纳米TiO2对粉煤灰-水泥体系早期力学性能的影响[J]. 建筑材料学报, 2021, 24(4): 694-700. |
MEI Junpeng, XU Zhidong, LI Hainan, et al. Influence of nano-TiO2 on the early mechanical properties of fly ash-cement system under steam curing[J]. Journal of Building Materials, 2021, 24(4): 694-700. | |
9 | 胡建荣, 张益, 张文刚. 光催化分解汽车尾气型沥青混合料研究[J]. 郑州大学学报(工学版), 2013, 34(3): 90-93. |
HU Jianrong, ZHANG Yi, ZHANG Wengang. Research on asphalt mixture with function of automobile exhaust photoeatalytic[J]. Journal of Zhengzhou University (Engineering Science), 2013, 34(3): 90-93. | |
10 | 何军辉, 姚武. 沸石及水泥基材料二次负载TiO2的光催化性能[J]. 建筑材料学报, 2020, 23(1): 35-39. |
HE Junhui, YAO Wu. Photocatalytic performance of twice loading TiO2 with zeolite and cementitious materials[J]. Journal of Building Materials, 2020, 23(1): 35-39. | |
11 | CUI Yanjuan, ZHANG Jinshui, ZHANG Guigang, et al. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry, 2011, 21(34): 13032-13039. |
12 | TANG Mengling, AO Yanhui, WANG Chao, et al. Facile synthesis of dual Z-scheme g-C3N4/Ag3PO4/AgI composite photocatalysts with enhanced performance for the degradation of a typical neonicotinoid pesticide[J]. Applied Catalysis B: Environmental, 2020, 268: 118395. |
13 | HE Fei, ZHU Bicheng, CHENG Bei, et al. 2D/2D/0D TiO2/C3N4/T3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity[J]. Applied Catalysis B: Environmental, 2020, 272: 119006. |
14 | 谢磊, 刘帅, 孙有为, 等. 石墨相氮化碳光催化剂的研究进展[J]. 石油化工高等学校学报, 2021, 34(6): 27-34. |
XIE Lei, LIU Shuai, SUN Youwei, et al. Research progress of graphite phase carbon nitride photocatalysts[J]. Journal of Petrochemical Universities, 2021, 34(6): 27-34. | |
15 | 马元功, 魏定邦, 赵静卓, 等. 硼掺杂石墨相氮化碳及其光催化性能研究[J]. 化工新型材料, 2019, 47(6): 204-210. |
MA Yuangong, WEI Dingbang, ZHAO Jingzhuo, et al. Study on B-g-C3N4 and its photocatalytic property[J]. New Chemical Materials, 2019, 47(6): 204-210. | |
16 | GUO Hai, NIU Chenggang, FENG Chengyang, et al. Steering exciton dissociation and charge migration in green synthetic oxygen-substituted ultrathin porous graphitic carbon nitride for boosted photocatalytic reactive oxygen species generation[J]. Chemical Engineering Journal, 2020, 385: 123919. |
17 | NAGAJYOTHI P C, PANDURANGAN M, VATTIKUTI S V P, et al. Enhanced photocatalytic activity of Ag/g-C3N4 composite[J]. Separation and Purification Technology, 2017, 188: 228-237. |
18 | 孙少峰, 涂琴, 张丽. CeO2/g-C3N4复合光催化剂的制备及其性能研究[J]. 水处理技术, 2021, 47(4): 52-55. |
SUN Shaofeng, TU Qin, ZHANG Li. Study on the preparation and performance of CeO2/g-C3N4 composite photocatalyst[J]. Technology of Water Treatment, 2021, 47(4): 52-55. | |
19 | 胡明玉, 周侠, 鄢升, 等. 硅藻土/泥炭藓基负载g-C3N4-TiO2的光催化调湿性能[J]. 建筑材料学报, 2021, 24(6): 1234-1241. |
HU Mingyu, ZHOU Xia, YAN Sheng, et al. Photocatalytic humidity-controlling performance of g-C3N4-TiO2 loaded on diatomite/sphagnum composite[J]. Journal of Building Materials, 2021, 24(6): 1234-1241. | |
20 | POON C S, CHEUNG E. NO removal efficiency of photocatalytic paving blocks prepared with recycled materials[J]. Construction and Building Materials, 2007, 21(8): 1746-1753. |
21 | 张瑜都, 孔文琼, 赵建昌, 等. g-C3N4光催化混凝土对NO降解性能研究[J]. 混凝土与水泥制品, 2021(3): 7-10. |
ZHANG Yudu, KONG Wenqiong, ZHAO Jianchang, et al. Photocatalytic concrete loaded with g-C3N4 and its degradation performance of NO[J]. China Concrete and Cement Products, 2021(3): 7-10. | |
22 | 鲁浈浈, 刘栋, 张琪, 等. 负载氮化碳光催化混凝土的制备及性能表征[J]. 建筑材料学报, 2019, 22(4): 559-566, 583. |
LU Zhenzhen, LIU Dong, ZHANG Qi, et al. Preparation and characterization of photocatalytic concrete loaded with carbon nitride[J]. Journal of Building Materials, 2019, 22(4): 559-566, 583. | |
23 | HONG Jindui, XIA Xiaoyang, WANG Yongsheng, et al. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light[J]. Journal of Materials Chemistry, 2012, 22(30): 15006-15012. |
24 | 周晓兵, 丁思晴, 高莉宁, 等. 掺杂改性石墨相氮化碳水泥基复合材料的光催化作用研究[J]. 公路, 2022, 67(10): 368-373. |
ZHOU Xiaobing, DING Siqing, GAO Lining, et al. Study on photocatalytic effect of doped modified graphite phase carbon nitride cement-based composites[J]. Highway, 2022, 67(10): 368-373. | |
25 | HE Rui, HUANG Xin, ZHANG Jiansong, et al. Preparation and evaluation of exhaust-purifying cement concrete employing titanium dioxide[J]. Materials, 2019, 12(13): 2182. |
26 | 汪超, 张同生, 谢晓庚, 等. 基于骨料球形度的透水混凝土配合比设计方法[J]. 建筑材料学报, 2022, 25(3): 235-241. |
WANG Chao, ZHANG Tongsheng, XIE Xiaogeng, et al. Mix proportion design method of pervious concrete based on aggregate sphericity[J]. Journal of Building Materials, 2022, 25(3): 235-241. | |
27 | WANG Xinchen, MAEDA Kazuhiko, THOMAS Arne, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. |
28 | 叶青. 纳米SiO2与硅粉的火山灰活性的比较[J]. 混凝土, 2001(3): 19-22. |
YE Qing. Research on the comparison of pozzolanic activity between nano SiO2 and silica fume[J]. Concrete, 2001(3): 19-22. | |
29 | 贺晓宇. 基于氮化碳的光催化水泥混凝土制备与性能研究[J]. 公路, 2020, 65(10): 292-296. |
HE Xiaoyu. Preparation and properties of photocatalytic cement concrete based on carbon nitride[J]. Highway, 2020, 65(10): 292-296. | |
30 | XIA Xiang, XIE Cong, XU Baogang, et al. Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation[J]. Journal of Industrial and Engineering Chemistry, 2022, 105: 303-312. |
[1] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
[2] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
[3] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
[4] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[5] | XU Shiqi, ZHU Ying, CHEN Ninghua, LU Caimei, JIANG Luying, WANG Junhui, QIN Yuelong, ZHANG Hanbing. Effect of environmental factors on the photocatalytic degradation behavior of tetracycline in water [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 551-559. |
[6] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[7] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[8] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[9] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[10] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[11] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[12] | YANG Zhuang, LI Runhua, QIANG Zengshou, WANG Yajun, YAO Wenqing. Photocatalytic degradation of waste refrigerant R134a [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2109-2114. |
[13] | DUO Jia, YAO Guodong, WANG Yingji, ZENG Xu, JIN Binbin. Effects on the photo-degradation of norfloxacin using modified Au-TiO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 624-630. |
[14] | CHENG Rong, DENG Ziqi, XIA Jincheng, LI Jiang, SHI Lei, ZHENG Xiang. Research progress on photocatalysis systems for inactivation of microbial aerosol [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 957-968. |
[15] | YAO Wen, ZHANG Yuchen, TENG Wenxin, LI Jiangling. Effect of surfactant on the preparation of Ca-doped β-In2S3 microstructure and its performance in photocatalytic degradation of methyl orange [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 774-782. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |