Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2907-2918.DOI: 10.16085/j.issn.1000-6613.2025-0002
• Chemical processes emission reduction • Previous Articles
JIN Shaoqing(
), FAN Xueyan, TANG Zhimou, WANG Yanli, WANG Darui, SUN Hongmin, YANG Weimin(
)
Received:2025-01-01
Revised:2025-03-09
Online:2025-05-20
Published:2025-05-25
Contact:
YANG Weimin
金少青(
), 范雪研, 唐智谋, 王衍力, 王达锐, 孙洪敏, 杨为民(
)
通讯作者:
杨为民
作者简介:金少青(1987—),男,博士,高级工程师,研究方向为钛硅分子筛催化氧化。E-mail:jinsq.sshy@sinopec.com。
基金资助:CLC Number:
JIN Shaoqing, FAN Xueyan, TANG Zhimou, WANG Yanli, WANG Darui, SUN Hongmin, YANG Weimin. Recent progress on titanosilicate zeolite catalyzed green oxidation technologies[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2907-2918.
金少青, 范雪研, 唐智谋, 王衍力, 王达锐, 孙洪敏, 杨为民. 基于钛硅分子筛催化的绿色氧化技术进展[J]. 化工进展, 2025, 44(5): 2907-2918.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0002
| 91 | 丁姜宏. 羰基化合物以及衍生物的绿色催化合成[D]. 上海: 华东师范大学, 2016. |
| DING Jianghong. Green catalytic synthesis of carbonyl compounds and derivatives[D]. Shanghai: East China Normal University, 2016. | |
| 92 | 杨玉林. MOR和MFI拓扑结构钛硅分子筛的液相氧化性能研究[D]. 上海: 华东师范大学, 2016. |
| YANG Yulin. Study on liquid phase oxidation performance of MOR and MFI topological titanium silicalite molecular sieves[D]. Shanghai: East China Normal University, 2016. | |
| 93 | 尹金鹏, 梁晓航, 孙丹宇, 等. 钛硅分子筛合成及其催化环己酮氨肟化反应研究进展[J]. 化学推进剂与高分子材料, 2023, 21(4): 1-11. |
| YIN Jinpeng, LIANG Xiaohang, SUN Danyu, et al. Research progress in synthesis of titanium silicalite and its catalytic cyclohexanone ammoximation reaction[J]. Chemical Propellants & Polymeric Materials, 2023, 21(4): 1-11. | |
| 94 | 林衍华, 陈秀宏, 王华文, 等. 苯二酚生产工艺进展[J]. 精细石油化工进展, 2002, 3(7): 28-31. |
| LIN Yanhua, CHEN Xiuhong, WANG Huawen, et al. Progress in process of dihydroxybenzene[J]. Advances in Fine Fetrochemicals, 2002, 3(7): 28-31. | |
| 95 | 杜亚平. 苯二酚的开发与生产进展[J]. 上海化工, 2008, 33(3): 19-24. |
| DU Yaping. Development and manufacture progress of dihydroxybenzene[J]. Shanghai Chemical Industry, 2008, 33(3): 19-24. | |
| 96 | BELLUSSI Giuseppe, MILLINI Roberto, POLLESEL Paolo, et al. Zeolite science and technology at eni[J]. New Journal of Chemistry, 2016, 40(5): 4061-4077. |
| 97 | 左轶, 刘民, 郭新闻. 钛硅分子筛的合成及其催化氧化反应研究进展[J]. 石油学报(石油加工), 2015, 31(2): 343-359. |
| 1 | 薛金召, 牛小娟, 汪希领, 等. 国内环氧丙烷市场分析及技术进展[J]. 化工进展, 2015, 34(9): 3500-3506. |
| XUE Jinzhao, NIU Xiaojuan, WANG Xiling, et al. Market analysis and technology progress of domestic propylene oxide[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3500-3506. | |
| 2 | KUMAR Rawesh, SHAH Sneha, PARAMITA DAS Prangya, et al. An overview of caprolactam synthesis[J]. Catalysis Reviews, 2019, 61(4): 516-594. |
| 3 | RUAN Hao, WANG Kaiwei, BING Changhao, et al. Investigation of the Ti active site in TS-1 for phenol hydroxylation via seed and dissolution-recrystallization methods[J]. Molecular Catalysis, 2024, 568: 114524. |
| 4 | 史延强, 夏玥穜, 温朗友, 等. 过氧化氢及其基本有机化学品绿色合成技术[J]. 化工进展, 2021, 40(4): 2048-2059. |
| SHI Yanqiang, XIA Yuetong, WEN Langyou, et al. Hydrogen peroxide and its green synthesis of basic organic chemicals[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2048-2059. | |
| 5 | TARAMASSO Marco, PEREGO Giovanni, NOTARI Bruno. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides: US4410501[P]. 1983-10-18. |
| 6 | 谢伟, 刘月明, 汪玲玲, 等. 具有MWW结构钛硅分子筛的研究进展[J]. 催化学报, 2010, 31(5): 502-513. |
| XIE Wei, LIU Yueming, WANG Lingling, et al. Recent advances in MWW-type titanosilicates[J]. Chinese Journal of Catalysis, 2010, 31(5): 502-513. | |
| 7 | Jan PŘECH. Catalytic performance of advanced titanosilicate selective oxidation catalysts—A review[J]. Catalysis Reviews, 2018, 60(1): 71-131. |
| 8 | MILLINI Roberto, BELLUSSI Giuseppe, POLLESEL Paolo, et al. Beyond TS-1: Background and recent advances in the synthesis of Ti-containing zeolites[J]. Microporous and Mesoporous Materials, 2022, 346: 112286. |
| 9 | WU Peng, XU Hao. Micro-mesoporous metallosilicates: Synthesis, characterization, and catalytic applications[M]. Weinheim, Germany: Wiley-VCH, 2024. |
| 10 | WANG Jiawen, DUAN Ning, LI Pan, et al. Recent advances in the synthesis and application of TS-1 zeolite for green catalytic oxidation[J]. Advanced Sustainable Systems, 2025, 9(2): 2400719. |
| 11 | WANG Xiangsheng, GUO Xinwen, LI Gang. Synthesis of titanium silicalite (TS-1) from the TPABr system and its catalytic properties for epoxidation of propylene[J]. Catalysis Today, 2002, 74(1/2): 65-75. |
| 12 | KRAUSHAAR B, VAN HOOFF J H C. A new method for the preparation of titanium-silicalite (TS-1)[J]. Catalysis Letters, 1988, 1(4): 81-84. |
| 13 | 李明丰, 郭新闻, 于桂燕, 等. 以de-[B]ZSM-5为母体的钛硅沸石Ti-SiZSM-5合成[J]. 石油化工, 1998, 27(5): 319-323. |
| LI Mingfeng, GUO Xinwen, YU Guiyan, et al. The synthesis of Ti-SiZSM-5 using de-[B]ZSM-5 as precursor[J]. Petrochemical Technology, 1998, 27(5): 319-323. | |
| 14 | 许章林, 张盈珍, 郑禄彬. 杂原子沸石的二次合成及其表征——Ⅱ.含Ti、Fe杂原子沸石[J]. 分子催化, 1992, 6(5): 365-370. |
| XU Zhanglin, ZHANG Yingzhen, ZHENG Lubin. The secondary synthesis of zeolites via framework substitution for aluminum Ⅱ. preparation and characterization of zeolite containing Ti and Fe elements[J]. Journal of Molecular Catalysis, 1992, 6(5): 365-370. | |
| 15 | DENG Xiujuan, WANG Yuning, SHEN Lu, et al. Low-cost synthesis of titanium silicalite-1 (TS-1) with highly catalytic oxidation performance through a controlled hydrolysis process[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1190-1196. |
| 16 | YANG Guoju, HAN Ji, LIU Yue, et al. The synthetic strategies of hierarchical TS-1 zeolites for the oxidative desulfurization reactions[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2227-2234. |
| 17 | BAI Risheng, SONG Yue, BAI Ruobing, et al. Creation of hierarchical titanosilicate TS-1 zeolites[J]. Advanced Materials Interfaces, 2021, 8(4): 2001095. |
| 18 | SERRANO D P, SANZ R, PIZARRO P, et al. Tailoring the properties of hierarchical TS-1 zeolite synthesized from silanized protozeolitic units[J]. Applied Catalysis A: General, 2012, 435: 32-42. |
| 19 | YAO Yulin, YANG Zonghan, ZHENG Pengfei, et al. Enhancing the accessible TiO6 concentration and the hydrophobicity of hierarchical TS-1 zeolites for alkene epoxidation and oxidative desulfurization[J]. Chemical Engineering Journal, 2023, 475: 146053. |
| 20 | LIU Meng, WANG Yaqing, CHEN Wenxia, et al. Synthesis of hierarchical titanium silicalite-1 by seed silanization for selective oxidation reactions[J]. Microporous and Mesoporous Materials, 2023, 350: 112458. |
| 21 | YUE MING bo, SUN MENG nan, XIE Fei, et al. Dry-gel synthesis of hierarchical TS-1 zeolite by using P123 and polyurethane foam as template[J]. Microporous and Mesoporous Materials, 2014, 183: 177-184. |
| 22 | DU Qi, GUO Yiping, WU Pei, et al. Facile synthesis of hierarchical TS-1 zeolite without using mesopore templates and its application in deep oxidative desulfurization[J]. Microporous and Mesoporous Materials, 2019, 275: 61-68. |
| 23 | SMEETS Valentin, GAIGNEAUX Eric M, DEBECKER Damien P. Hierarchical micro-/ macroporous TS-1 zeolite epoxidation catalyst prepared by steam assisted crystallization[J]. Microporous and Mesoporous Materials, 2020, 293: 109801. |
| 24 | WANG Yongrui, LIN Min, TUEL Alain. Hollow TS-1 crystals formed via a dissolution-recrystallization process[J]. Microporous and Mesoporous Materials, 2007, 102(1/2/3): 80-85. |
| 25 | XU Wenjing, LI Li, ZHANG Tianjun, et al. Tailoring porosity and titanium species of TS-1 zeolites via organic base-assisted sequential post-treatment[J]. Chemical Research in Chinese Universities, 2022, 38(1): 50-57. |
| 26 | 刘巍, 郭冬冬, 邓东浩, 等. FAU型多级孔分子筛孔道结构的表征[J]. 石油化工, 2021, 50(1): 1-5. |
| LIU Wei, GUO Dongdong, DENG Donghao, et al. Characterization of the channel structure of FAU-type hierarchical porous molecular sieves[J]. Petrochemical Technology, 2021, 50(1): 1-5. | |
| 27 | WISSER Dorothea, HARTMANN Martin. 129Xe NMR on porous materials: Basic principles and recent applications[J]. Advanced Materials Interfaces, 2021, 8(4): 2001266. |
| 28 | WANG Baorong, PENG Xinxin, ZHANG Wenfeng, et al. Hierarchical TS-1 synthesized via the dissolution-recrystallization process: Influence of ammonium salts[J]. Catalysis Communications, 2017, 101: 26-30. |
| 29 | 肖昱, 刘湛, 余申, 等. 具有高活性六配位Ti物种的多级孔TS-1分子筛的合成及应用[J]. 石油学报(石油加工), 2024, 40(5): 1157-1167. |
| XIAO Yu, LIU Zhan, YU Shen, et al. Synthesis and application of hierarchical porous TS-1 zeolite with highly active six-coordinated Ti species[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2024, 40(5): 1157-1167. | |
| 30 | LI Shiqing, Jie TUO, PENG Rusi, et al. Controllable construction of highly active Ti species in TS-1 zeotype by organic base treatment[J]. Catalysis Science & Technology, 2025, 15(3): 722-733. |
| 31 | WANG Baohe, GUO Yanke, ZHU Jing, et al. A review on titanosilicate-1 (TS-1) catalysts: Research progress of regulating titanium species[J]. Coordination Chemistry Reviews, 2023, 476: 214931. |
| 32 | WANG Yihao, WANG Kaiwei, WANG Fumin, et al. A review on the active sites for titanium species in zeolites: Coordination structure, synthetic strategies and activity[J]. Materials Chemistry Frontiers, 2025, 9(1): 8-29. |
| 33 | FAN Weibin, DUAN Renguan, YOKOI Toshiyuki, et al. Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species[J]. Journal of the American Chemical Society, 2008, 130(31): 10150-10164. |
| 34 | GUO Qiang, SUN Dr Keju, FENG Prof Dr Zhaochi, et al. A thorough investigation of the active titanium species in TS-1 zeolite by in situ UV resonance Raman spectroscopy[J]. Chemistry: A European Journal, 2012, 18(43): 13854-13860. |
| 35 | WANG Yanli, YANG Hong, ZUO Yi, et al. New penta- and hexa-coordinated titanium sites in titanium silicalite-1 catalyst for propylene epoxidation[J]. Applied Catalysis B: Environmental, 2023, 325: 122396. |
| 36 | XU Wenjing, ZHANG Tianjun, BAI Risheng, et al. A one-step rapid synthesis of TS-1 zeolites with highly catalytically active mononuclear TiO6 species[J]. Journal of Materials Chemistry A, 2020, 8(19): 9677-9683. |
| 37 | WANG Yuyao, LI Li, BAI Risheng, et al. Amino acid-assisted synthesis of TS-1 zeolites containing highly catalytically active TiO6 species[J]. Chinese Journal of Catalysis, 2021, 42(12): 2189-2196. |
| 38 | WANG Lingling, LIU Yueming, XIE Wei, et al. Highly efficient and selective production of epichlorohydrin through epoxidation of allyl chloride with hydrogen peroxide over Ti-MWW catalysts[J]. Journal of Catalysis, 2007, 246(1): 205-214. |
| 39 | 宋芬. 新一代钛硅分子筛催化剂Ti-MWW在环境友好化学过程中的应用[D]. 上海: 华东师范大学, 2007. |
| SONG Fen. Application of Ti-MWW, a new generation of Ti-Si molecular sieve catalyst, in environmentally friendly chemical processes[D]. Shanghai: East China Normal University, 2007. | |
| 40 | WU Peng, TATSUMI Takashi, KOMATSU Takayuki, et al. A novel titanosilicate with MWW structure. Ⅰ. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations[J]. The Journal of Physical Chemistry B, 2001, 105(15): 2897-2905. |
| 41 | WU Peng, MIYAJI Takayuki, LIU Yueming, et al. Synthesis of Ti-MWW by a dry-gel conversion method[J]. Catalysis Today, 2005, 99(1/2): 233-240. |
| 42 | LIU Na, LIU Yueming, XIE Wei, et al. Hydrothermal synthesis of boron-free Ti-MWW with dual structure-directing agents[J]. Studies in Surface Science and Catalysis, 2007, 170: 464-469. |
| 43 | TANG Zhimou, YU Yunkai, LIU Wei, et al. Deboronation-assisted construction of defective Ti(OSi)3OH species in MWW-type titanosilicate and their enhanced catalytic performance[J]. Catalysis Science & Technology, 2020, 10(9): 2905-2915. |
| 44 | JIN Shaoqing, WANG Zhendong, TAO Guiju, et al. UV resonance Raman spectroscopic insight into titanium species and structure-performance relationship in boron-free Ti-MWW zeolite[J]. Journal of Catalysis, 2017, 353: 305-314. |
| 45 | ZHANG Shilin, JIN Shaoqing, TAO Guiju, et al. The evolution of titanium species in boron-containing Ti-MWW zeolite during post-treatment revealed by UV resonance Raman spectroscopy[J]. Microporous and Mesoporous Materials, 2017, 253: 183-190. |
| 46 | ZHANG Jie, JIN Shaoqing, DENG Donghao, et al. Insight into the formation of framework titanium species during acid treatment of MWW-type titanosilicate and the effect of framework titanium state on olefin epoxidation[J]. Microporous and Mesoporous Materials, 2021, 314: 110862. |
| 47 | 罗强强, 金少青, 孙洪敏, 等. 液相酸溶液后补钛合成Ti-MWW分子筛[J]. 高等学校化学学报, 2021, 42(9): 2742-2751. |
| LUO Qiangqiang, JIN Shaoqing, SUN Hongmin, et al. Post-synthesis of Ti-MWW zeolite via titanium incorporation in liquid acid solution[J]. Chemical Journal of Chinese Universities, 2021, 42(9): 2742-2751. | |
| 48 | HUO Yuanling, ZHANG Yang, XU Wen, et al. Acid-modulated synthesis of Ti-MWW zeolites with rich framework Ti species for efficient epoxidation[J]. Industrial & Engineering Chemistry Research, 2020, 59(45): 19929-19937. |
| 49 | XU Bowen, DENG Mengshan, LIN Kehang, et al. Acid-modulated synthesis of ultra-thin Ti-MWW zeolite nanosheets for the efficient epoxidation of cycloalkenes with tert-butyl hydroperoxide[J]. Journal of Catalysis, 2024, 429: 115256. |
| 50 | FAN Xueyan, HU Wende, JIN Shaoqing, et al. Effect of P modification on the structure and catalytic performance of Ti-MWW zeolite[J]. Microporous and Mesoporous Materials, 2022, 336: 111887. |
| 51 | XU Le, HUANG Dading, LI Chengeng, et al. Construction of unique six-coordinated titanium species with an organic amine ligand in titanosilicate and their unprecedented high efficiency for alkene epoxidation[J]. Chemical Communications, 2015, 51(43): 9010-9013. |
| 52 | YIN Jinpeng, XU Hao, WANG Bowen, et al. Highly selective 1-pentene epoxidation over Ti-MWW with modified microenvironment of Ti active sites[J]. Catalysis Science & Technology, 2020, 10(17): 6050-6064. |
| 53 | WU Peng, NUNTASRI Duangamol, RUAN Juanfang, et al. Delamination of Ti-MWW and high efficiency in epoxidation of alkenes with various molecular sizes[J]. The Journal of Physical Chemistry B, 2004, 108(50): 19126-19131. |
| 97 | ZUO Yi, LIU Min, GUO Xinwen. Recent advances in synthesis and catalytic oxidation reactions of titanium silicates[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(2): 343-359. |
| 98 | INAGAKI S, TSUBOI Y, SASAKI M, et al. Enhancement of para-selectivity in the phenol oxidation with H2O2 over Ti-MCM-68 zeolite catalyst[J]. Green Chemistry, 2016, 18(3): 735-741. |
| 99 | ZHANG Shengxiang, NISHI Yuko, NAKAMURA Kaisei, et al. Efficient synthesis of MSE-type zeolite using a highly effective organic structure-directing agent and excellent catalytic performance of its derived titanosilicate[J]. Microporous and Mesoporous Materials, 2025, 384: 113452. |
| 100 | SERRANO D P, SANZ R, PIZARRO P, et al. Hierarchical TS-1 zeolite as an efficient catalyst for oxidative desulphurization of hydrocarbon fractions[J]. Applied Catalysis B: Environmental, 2014, 146: 35-42. |
| 101 | ZHANG Jiani, BAI Risheng, FENG Zhaochi, et al. Amide-assisted synthesis of TS-1 zeolites with active Ti(OH2)2(OH)2(OSi)2 sites toward efficient oxidative desulfurization[J]. Applied Catalysis B: Environmental, 2024, 342: 123339. |
| 102 | Yoshihiro KON, YOKOI Toshiyuki, YOSHIOKA Masato, et al. Selective hydrogen peroxide oxidation of sulfides to sulfoxides or sulfones with MWW-type titanosilicate zeolite catalyst under organic solvent-free conditions[J]. Tetrahedron, 2014, 70(41): 7584-7592. |
| 103 | 史春风, 林民, 朱斌, 等. 空心钛硅分子筛在二甲基硫醚液相氧化反应中的催化性能[J]. 石油学报(石油加工), 2018, 34(4): 805-810. |
| SHI Chunfeng, LIN Min, ZHU Bin, et al. Catalytic peformance of hollow titanosilicate zeolite in dimethyl sulfide liquid phase oxidation reaction[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(4): 805-810. | |
| 104 | Iveta MARTAUSOVÁ, Daniela SPUSTOVÁ, CVEJN Daniel, et al. Catalytic activity of advanced titanosilicate zeolites in hydrogen peroxide S-oxidation of methyl(phenyl)sulfide[J]. Catalysis Today, 2019, 324: 144-153. |
| 105 | ROBINSON Denis J, MCMORN Paul, BETHELL Donald, et al. N-oxidation of pyridines by hydrogen peroxide in the presence of TS-1[J]. Catalysis Letters, 2001, 72(3): 233-234. |
| 106 | XIE Wei, ZHENG Yuting, ZHAO Song, et al. Selective oxidation of pyridine to pyridine-N-oxide with hydrogen peroxide over Ti-MWW catalyst[J]. Catalysis Today, 2010, 157(1/2/3/4): 114-118. |
| 54 | WANG Lingling, WANG Yong, LIU Yueming, et al. Post-transformation of MWW-type lamellar precursors into MCM-56 analogues[J]. Microporous and Mesoporous Materials, 2008, 113(1/2/3): 435-444. |
| 55 | WANG Tao, JIN Fang, YI Xianfeng, et al. Atom-planting synthesis of MCM-36 catalyst to investigate the influence of pore structure and titanium coordination state on epoxidation activity[J]. Microporous and Mesoporous Materials, 2021, 310: 110645. |
| 56 | TANG Zhimou, YU Yunkai, CHEN Zhen, et al. Expanded titanosilicate MWW-related materials synthesized from a boron-containing precursor as an efficient catalyst for cyclohexene oxidation[J]. Microporous and Mesoporous Materials, 2021, 327: 111437. |
| 57 | JIN Shaoqing, TAO Guiju, ZHANG Shilin, et al. A facile organosilane-based strategy for direct synthesis of thin MWW-type titanosilicate with high catalytic oxidation performance[J]. Catalysis Science & Technology, 2018, 8(23): 6076-6083. |
| 58 | NA Kyungsu, Changbum JO, KIM Jaeheon, et al. MFI titanosilicate nanosheets with single-unit-cell thickness as an oxidation catalyst using peroxides[J]. ACS Catalysis, 2011, 1(8): 901-907. |
| 59 | VAN DER WAAL J C, RIGUTTO M S, VAN BEKKUM H. Zeolite titanium beta as a selective catalyst in the epoxidation of bulky alkenes[J]. Applied Catalysis A: General, 1998, 167(2): 331-342. |
| 60 | TANG Bo, DAI Weili, SUN Xiaoming, et al. A procedure for the preparation of Ti-Beta zeolites for catalytic epoxidation with hydrogen peroxide[J]. Green Chemistry, 2014, 16(4): 2281-2291. |
| 61 | LIN Haoyi, WANG Jiaqi, GAO Boxin, et al. Solvent-free and low template content synthesis of Ti-Beta zeolite via interzeolite transformation for oxidative desulfurization[J]. Microporous and Mesoporous Materials, 2022, 344: 112203. |
| 62 | WU Peng, KOMATSU Takayuki, YASHIMA Tatsuaki. Ammoximation of ketones over titanium mordenite[J]. Journal of Catalysis, 1997, 168(2): 400-411. |
| 63 | XU Hao, ZHANG Yingtian, WU Haihong, et al. Postsynthesis of mesoporous MOR-type titanosilicate and its unique catalytic properties in liquid-phase oxidations[J]. Journal of Catalysis, 2011, 281(2): 263-272. |
| 64 | PENG Rusi, WAN Zhipeng, LV Huanzhi, et al. Al-Modified Ti-MOR as a robust catalyst for cyclohexanone ammoximation with enhanced anti-corrosion performance[J]. Catalysis Science & Technology, 2021, 11(22): 7287-7299. |
| 65 | KUBOTA Yoshihiro, KOYAMA Yoshihito, YAMADA Taku, et al. Synthesis and catalytic performance of Ti-MCM-68 for effective oxidation reactions[J]. Chemical Communications, 2008(46): 6224-6226. |
| 66 | YIN Jianyong, LU Xinqing, YAN Jiayin, et al. Postsynthesis of Ti-UZM-35 titanosilicate as efficient catalyst for phenol hydroxylation reaction[J]. Microporous and Mesoporous Materials, 2020, 305: 110321. |
| 67 | INAGAKI Satoshi, KANEDA Midori, HAIKAL Danial, et al. Crystallization behavior of highly defective MSE-type zeolite, incorporation of Ti into the framework, and its hydrophobic-hydrophilic nature controlled by post-synthesis modifications[J]. Crystal Growth & Design, 2023, 23(5): 3681-3693. |
| 68 | 金少青, 孙洪敏, 杨为民. 沸石分子筛催化剂在化学工业中的应用[J]. 高等学校化学学报, 2021, 42(1): 217-226. |
| JIN Shaoqing, SUN Hongmin, YANG Weimin. Applications of zeolite catalysts in chemical industry[J]. Chemical Journal of Chinese Universities, 2021, 42(1): 217-226. | |
| 69 | WU Peng, KOMATSU Takayuki, YASHIMA Tatsuaki. Characterization of titanium species incorporated into dealuminated mordenites by means of IR spectroscopy and 18O-exchange technique[J]. The Journal of Physical Chemistry, 1996, 100(24): 10316-10322. |
| 70 | XU Le, DING Jianghong, YANG Yulin, et al. Distinctions of hydroxylamine formation and decomposition in cyclohexanone ammoximation over microporous titanosilicates[J]. Journal of Catalysis, 2014, 309: 1-10. |
| 71 | LU Xinqing, GUAN Yejun, XU Hao, et al. Clean synthesis of furfural oxime through liquid-phase ammoximation of furfural over titanosilicate catalysts[J]. Green Chemistry, 2017, 19(20): 4871-4878. |
| 72 | WAN Zhipeng, TAN Jingyi, CHEN Wei, et al. MOR-type titanosilicate with specific Ti location in defective T3 sites for efficient cyclohexanone ammoximation[J]. ACS Catalysis, 2024, 14(13): 10102-10112. |
| 73 | PENG Rusi, PAN Huang, LI Xintong, et al. Post-synthesis of MSE-type titanosilicates by interzeolite transformation for selective anisole hydroxylation[J]. Catalysis Science & Technology, 2022, 12(20): 6098-6111. |
| 74 | BLASCO T, CORMA A, NAVARRO M T, et al. Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures[J]. Journal of Catalysis, 1995, 156(1): 65-74. |
| 75 | WU Peng, TATSUMI Takashi, KOMATSU Takayuki, et al. Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15[J]. Chemistry of Materials, 2002, 14(4): 1657-1664. |
| 76 | 李学峰, 高焕新, 金国杰, 等. 硅烷化对Ti/HMS分子筛催化性能的影响[J]. 催化学报, 2007, 28(6): 551-556. |
| LI Xuefeng, GAO Huanxin, JIN Guojie, et al. Influence of silylation on catalytic performance of Ti/HMS molecular sieve[J]. Chinese Journal of Catalysis, 2007, 28(6): 551-556. | |
| 77 | 雷世龙. 丙烯环氧化工艺概述及催化剂研究进展[J]. 石油化工, 2024, 53(3): 410-417. |
| LEI Shilong. Overview of propylene epoxidation process and research advances in epoxidation catalysts[J]. Petrochemical Technology, 2024, 53(3): 410-417. | |
| 78 | 于剑昆, 李中, 刘青炜. BASF-Dow公司HPPO工艺介绍[J]. 化学推进剂与高分子材料, 2011, 9(5): 8-23. |
| YU Jiankun, LI Zhong, LIU Qingwei. Introduction of BASF-dow corporation’s HPPO process[J]. Chemical Propellants & Polymeric Materials, 2011, 9(5): 8-23. | |
| 79 | 于剑昆. Degussa-Uhde公司的HPPO工艺介绍[J]. 化学推进剂与高分子材料, 2009, 7(2): 15-22, 30. |
| YU Jiankun. Introduction of degussa-uhde HPPO process[J]. Chemical Propellants & Polymeric Materials, 2009, 7(2): 15-22, 30. | |
| 80 | YIN Jinpeng, JIN Xin, XU Hao, et al. Structured binder-free MWW-type titanosilicate with Si-rich shell for selective and durable propylene epoxidation[J]. Chinese Journal of Catalysis, 2021, 42(9): 1561-1575. |
| 81 | YU Yunkai, WANG Jianhao, FANG Nan, et al. Evidence of solvent-mediated proton transfer during H2O2 activation in titanosilicate-catalyzed oxidation systems[J]. Physical Chemistry Chemical Physics, 2023, 25(17): 12220-12230. |
| 82 | YU Yunkai, FANG Nan, CHEN Zhen, et al. Greening oxidation catalysis: Water as a solvent for efficient alkene epoxidation over a titanosilicate/H2O2 system[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(35): 11641-11654. |
| 83 | TANG Kang, HOU Weilong, WANG Xiaoshu, et al. Enhanced catalytic performance of trimethylsilylated Ti-MWW zeolites for the liquid-phase epoxidation of propylene with H2O2 [J]. Microporous and Mesoporous Materials, 2021, 328: 111492. |
| 84 | LIU Dongxu, WANG Rui, YU Yunkai, et al. Chemical deactivation of titanosilicate catalysts caused by propylene oxide in the HPPO process[J]. Catalysis Science & Technology, 2023, 13(5): 1437-1447. |
| 85 | 于剑昆, 吕国会. 国内HPPO工业化技术进展[J]. 化学推进剂与高分子材料, 2019, 17(1): 1-16. |
| YU Jiankun, Guohui LYU. Progress of domestic HPPO industrialized technology[J]. Chemical Propellants & Polymeric Materials, 2019, 17(1): 1-16. | |
| 86 | 于剑昆, 张会君, 沈冲. 国内HPPO工业化技术近况(续前)[J]. 化学推进剂与高分子材料, 2020, 18(2): 10-23. |
| YU Jiankun, ZHANG Huijun, SHEN Chong. Recent situation of domestic HPPO industrialization techniqu(Contn.)[J]. Chemical Propellants & Polymeric Materials, 2020, 18(2): 10-23. | |
| 87 | 夏长久, 于佳元, 林民, 等. 中国石化双氧水法制环氧丙烷工业开发及关键科技问题[J]. 石油炼制与化工, 2024, 55(1): 130-134. |
| XIA Changjiu, YU Jiayuan, LIN Min, et al. Key scientific problems and industrial development of Sinopec hppo technology for green propylene oxide production[J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 130-134. | |
| 88 | 于剑昆. 近年来国内CHPPO工业化技术最新进展(待续)[J]. 化学推进剂与高分子材料, 2023, 21(4): 17-31. |
| YU Jiankun. Latest progress of domestic CHPPO industrialization technique in recent years(Cont.)[J]. Chemical Propellants & Polymeric Materials, 2023, 21(4): 17-31. | |
| 89 | 于剑昆. 近年来国内CHPPO工业化技术最新进展(续前)[J]. 化学推进剂与高分子材料, 2023, 21(5): 28-41. |
| YU Jiankun. Latest progress of domestic CHPPO industrialization technique in recent years(contn.)[J]. Chemical Propellants & Polymeric Materials, 2023, 21(5): 28-41. | |
| 90 | 于剑昆. 近年来国内CHPPO工业化技术最新进展(续完)[J]. 化学推进剂与高分子材料, 2023, 21(6): 10-25. |
| YU Jiankun. Latest progress of domestic CHPPO industrialization technique in recent years(to the end)[J]. Chemical Propellants & Polymeric Materials, 2023, 21(6):10-25. |
| [1] | GUO Pei, CUI Cancan, KONG Dejie, HUANG Sheng. Development trend of sulfide solid electrolytes for solid-state lithium batteries in the context of “dual carbon goals” [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5193-5206. |
| [2] | SHI Jiating, WANG Hui, PU Kaikai, ZHAO Ting, NIE Lijun, ZHENG Na, GAO Yuhang, XUE Kunkun, SHI Jianhui. Enhanced hydrogen peroxide production performance in visible light from ultra-thin g-C3N4 nanosheets with carbon vacancies [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4148-4154. |
| [3] | ZHANG Changsheng, WEN Song, ZHAO Jinchong, LU Fangxu, JIANG Jie. Advances in chemical deoxidation of oxygen-containing organic gases in chemical processes [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 903-912. |
| [4] | XU Qin, WANG Baoguo. Recent progress on carbon-based electrocatalysts for hydrogen peroxide production via two-electron oxygen reduction reaction [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6155-6172. |
| [5] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
| [6] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
| [7] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
| [8] | JIN Yong, CHENG Yi, BAI Dingrong, ZHANG Chenxi, WEI Fei. Fluidization research and development in China [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2761-2780. |
| [9] | SONG Wangyi, ZHAO Xinfang, LIU Wei, XUE Ling. Effect of valve hardening process on hydrogen peroxide production by anthraquinone process [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 54-59. |
| [10] | LIAO Bing, XU Wen, YE Qiuyue. A review of activated percarbonate and peroxymonocarbonate in the field of water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3235-3248. |
| [11] | SHAO Bin, SUN Zheyi, ZHANG Yun, PAN Fenghongkang, ZHAO Kaiqing, HU Jun, LIU Honglai. Recent progresses in CO2 to syngas and high value-added products [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1136-1151. |
| [12] | XIAO Boren, YANG Jinxing, LIU Haipeng, QI Lihong, ZUO Guomin. Application of the catalysis and activation system based on hydrogen peroxide on the decontamination of hazardous chemicals [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 426-433. |
| [13] | SHI Yanqiang, XIA Yuetong, WEN Langyou, GAO Liang, XU Guangtong, ZONG Baoning. Hydrogen peroxide and its green synthesis of basic organic chemicals [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2048-2059. |
| [14] | LIANG Hairui, WANG Li, LIU Guozhu. A review of recent development on catalysts for direct synthesis of hydrogen peroxide from hydrogen and oxygen [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2060-2069. |
| [15] | FAN Tao. Industrial application progress of lignite pyrolysis technology in eastern area of Inner Mongolia, China [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1362-1370. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |