Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1362-1370.DOI: 10.16085/j.issn.1000-6613.2020-0888
• Energy processes and technology • Previous Articles Next Articles
Received:
2020-05-22
Online:
2021-03-17
Published:
2021-03-05
Contact:
FAN Tao
通讯作者:
范涛
作者简介:
范涛(1986—),男,博士研究生,研究方向为煤炭转化与清洁利用。E-mail:基金资助:
CLC Number:
FAN Tao. Industrial application progress of lignite pyrolysis technology in eastern area of Inner Mongolia, China[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1362-1370.
范涛. 蒙东褐煤热解技术工业应用进展[J]. 化工进展, 2021, 40(3): 1362-1370.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0888
褐煤资源 | 工业分析(ar,质量分数)/% | 元素分析(daf,质量分数)/% | 热值Qnet,ar /MJ·kg-1 | ||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | C | H | N | S | O | ||
霍林河煤田 | 32.96 | 14.42 | 30.06 | 74.42 | 4.00 | 1.12 | 0.43 | 20.03 | 14.12 |
胜利煤田 | 33.24 | 9.30 | 22.28 | 66.90 | 4.16 | 1.03 | 2.10 | 25.81 | 15.62 |
白音华煤田 | 32.92 | 7.44 | 25.46 | 68.8 | 5.00 | 1.40 | 1.40 | 23.4 | 15.21 |
伊敏河煤田 | 30.24 | 10.36 | 26.15 | 68.95 | 4.97 | 0.97 | 0.32 | 25.09 | 14.75 |
元宝山煤田 | 30.55 | 10.10 | 22.24 | 79.15 | 4.86 | 1.37 | 0.57 | 14.05 | 12.55 |
乌拉盖褐煤 | 39.42 | 6.79 | 26.18 | 74.05 | 3.94 | 0.78 | 0.88 | 20.35 | 13.90 |
褐煤资源 | 工业分析(ar,质量分数)/% | 元素分析(daf,质量分数)/% | 热值Qnet,ar /MJ·kg-1 | ||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | C | H | N | S | O | ||
霍林河煤田 | 32.96 | 14.42 | 30.06 | 74.42 | 4.00 | 1.12 | 0.43 | 20.03 | 14.12 |
胜利煤田 | 33.24 | 9.30 | 22.28 | 66.90 | 4.16 | 1.03 | 2.10 | 25.81 | 15.62 |
白音华煤田 | 32.92 | 7.44 | 25.46 | 68.8 | 5.00 | 1.40 | 1.40 | 23.4 | 15.21 |
伊敏河煤田 | 30.24 | 10.36 | 26.15 | 68.95 | 4.97 | 0.97 | 0.32 | 25.09 | 14.75 |
元宝山煤田 | 30.55 | 10.10 | 22.24 | 79.15 | 4.86 | 1.37 | 0.57 | 14.05 | 12.55 |
乌拉盖褐煤 | 39.42 | 6.79 | 26.18 | 74.05 | 3.94 | 0.78 | 0.88 | 20.35 | 13.90 |
技术类别 | 规模/ | 原料粒度/mm | 传热方式 | 熄焦方式 | 是否补热 | 焦油品质 | 半焦用途 |
---|---|---|---|---|---|---|---|
LCC技术 | 30 | 6~50 | 内热式 | 湿法熄焦 | 需要 | 含尘量高 | 动力煤 |
LCP技术 | 100 | <80 | 外热式 | 干法熄焦 | 需要 | 不回收 | 动力煤、型煤 |
带式炉改性提质技术 | 100 | 3~25 | 内热式 | 干法熄焦 | 需要 | 不回收 | 动力煤 |
GF-1型褐煤提质技术 | 2×50 | 6~120 | 内热式 | 干法熄焦 | 不需要 | 含尘量高 | 动力煤、活性焦 |
SJ方炉热解技术 | 30 | 30~80 | 内热式 | 水熄焦 | 不需要 | 品质较好 | 动力煤 |
气-固错流热解技术 | 60 | <80 | 内热式 | 干法熄焦 | 不需要 | 品质较好 | 动力煤、洁净型煤 |
技术类别 | 规模/ | 原料粒度/mm | 传热方式 | 熄焦方式 | 是否补热 | 焦油品质 | 半焦用途 |
---|---|---|---|---|---|---|---|
LCC技术 | 30 | 6~50 | 内热式 | 湿法熄焦 | 需要 | 含尘量高 | 动力煤 |
LCP技术 | 100 | <80 | 外热式 | 干法熄焦 | 需要 | 不回收 | 动力煤、型煤 |
带式炉改性提质技术 | 100 | 3~25 | 内热式 | 干法熄焦 | 需要 | 不回收 | 动力煤 |
GF-1型褐煤提质技术 | 2×50 | 6~120 | 内热式 | 干法熄焦 | 不需要 | 含尘量高 | 动力煤、活性焦 |
SJ方炉热解技术 | 30 | 30~80 | 内热式 | 水熄焦 | 不需要 | 品质较好 | 动力煤 |
气-固错流热解技术 | 60 | <80 | 内热式 | 干法熄焦 | 不需要 | 品质较好 | 动力煤、洁净型煤 |
1 | 初茉, 李华民. 褐煤的加工与利用技术[J]. 煤炭工程, 2005(2): 47-49. |
CHU Mo, LI Huamin. Lignite processing and utilization technology [J]. Coal Engineering, 2005(2): 47-49. | |
2 | 秦鹏珍, 赵汀, 周凤英, 等. 蒙东区褐煤资源分布及其开发利用战略研究[J]. 中国矿业, 2017, 26(10): 70-75. |
QIN Pengzhen, ZHAO Ting, ZHOU Fengying, et al. Study on the distribution and development strategy of lignite resources in Eastern Inner Mongolia District [J]. China Mining Magazine, 2017, 26(10): 70-75. | |
3 | 段虹. 褐煤的化工利用技术进展[J]. 云南化工, 2018, 45(1): 1-3. |
DUAN Hong. Technical progress of lignite used in chemical industry [J]. Yunan Chemical Technology, 2018, 45(1): 1-3. | |
4 | 兰玉顺, 陈文文. 煤热解技术研究与开发进展[J]. 煤化工, 2017, 45(2): 66-70. |
LAN Yushun, CHEN Wenwen. Research and development progress of coal pyrolysis technology [J]. Coal Chemical Industry, 2017, 45(2): 66-70. | |
5 | 赵奇. 中国褐煤资源清洁高效利用现状[J]. 洁净煤技术, 2018, 24(2): 9-14. |
ZHAO Qi. Clean and efficient utilization of lignite resources in China [J]. Clean Coal Technology, 2018, 24(2): 9-14. | |
6 | BAN Yanpeng, LIU Quansheng, ZHOU Huacong, et al. Catalytic effect of representative calcium salts on the steam gasification of a Shengli lignite [J]. Fuel, 2019, 255: 1-10. |
7 | FENG Xiaobo, CAO Jingpei, ZHAO Xiaoyan, et al. Organic oxygen transformation during pyrolysis of Baiyinhua lignite [J]. Journal of Analytical and Applied Pyrolysis, 2016, 117: 106-115 |
8 | FU Daqing, LI Xiaohong, LI Wenying, et al. Catalytic upgrading of coal pyrolysis products over bio-char [J]. Fuel Processing Technology, 2018, 176: 240-248. |
9 | QIAN Lin, ZHAO Yijun, SUN Shaozeng. Chemical/physical properties of char during devolatilization in inert and reducing conditions [J]. Fuel Processing Technology, 2014, 118: 327-334. |
10 | QU Yang, CHU Mo, SHEN Guodong, et al. Inhibitory effect of coal direct liquefaction residue on lignite pulverization during co-pyrolysis [J]. Fuel Processing Technology, 2016, 147: 57-63. |
11 | ZHANG Chun, WU Rongcheng, XU Guangwen. Coal pyrolysis for high-quality tar in fixed bed pyrolyzer enhanced with internals [J]. Energy Fuels, 2014, 28(1): 236-244. |
12 | ZHAO Gangwei. The effect of online catalytic pyrolysis on the yield of light liquid products [J]. Journal of Thermal Science, 2014, 23(3): 275-278. |
13 | LI Qingsong, LIN Yuankui. Energy analysis of the LFC process [J]. Energy Conversion and Management, 2016, 108: 348-354. |
14 | 陈钢, 黄学群. LCC低阶煤转化提质技术的开发与应用[J]. 化肥设计, 2011, 49(5): 7-11. |
CHEN Gang, HUANG Xuequn. Development and application for upgrading technology of LCC low-rank conversion [J]. Chemical Fertilizer Design, 2011, 49(5): 7-11. | |
15 | 李柏荣. 优质煤产品生产装置及生产系统: CN 201110145164.X [P]. 2011-11-30. |
LI Borong. High-quality coal product production plant and production system: CN 201110145164.X [P]. 2011-11-30. | |
16 | 刘佳, 张兴. 低阶煤分质转化多联产技术的工业化进程[J]. 山西化工, 2016, 36(5): 53-56. |
LIU Jia, ZHANG Xing. Industrialization progress for poly-generation technology of low rank coal conversion utilization [J]. Shanxi Chemical Industry, 2016, 36(5): 53-56. | |
17 | 刘书贤, 门卓武, 郭屹, 等. 块煤热解提质工艺及反应器开发进展[J]. 洁净煤技术, 2015, 21(4): 67-73. |
LIU Shuxian, Zhuowu MEN, GUO Yi, et al. Status and development of lump coal pyrolysis and reactor design technologes [J]. Clean Coal Technology, 2015, 21(4): 67-73. | |
18 | 王青. 带式炉褐煤提质工艺及经济性分析[J]. 煤化工, 2013, 41(6): 16-18. |
WANG Qing. Belt-furnace lignite upgrade process and its economical efficiency [J]. Coal Chemical Industry, 2013, 41(6): 16-18. | |
19 | 张培林, 吴鹏, 张旭辉. 生产褐煤活性焦用立式炉的热工评价与分析[J]. 洁净煤技术, 2015, 21(5): 91-94. |
ZHANG Peilin, WU Peng, ZHANG Xuhui. Thermal evaluation and analysis of vertical furnace for lignite activated coke production [J]. Clean Coal Technology, 2015, 21(5): 91-94. | |
20 | 吴鹏, 苗文华, 滕济林, 等. 多段直立炉用于陕北低阶碎煤热解的适用性研究[J]. 煤炭转化, 2018, 41(1): 27-32. |
WU Peng, MIAO Wenhua, TENG Jilin, et al. Applicability study on vertical furnace for Shanbei crushed low-rank pyrolysis [J]. Coal Conversion, 2018, 41(1): 27-32. | |
21 | 郑锦涛. 煤气热载体分段多层低阶煤热解成套工业化技术(SM-GF)的应用 [J]. 煤炭加工与综合利用, 2018(8): 55-58. |
ZHENG Jintao. Application of industrial technology(SM-GF) of coal gas heat carrier segment multilayer low-rank coal pyrolysis [J]. Coal Processing & Comprehensive Utilization, 2018(8): 55-58. | |
22 | 米文星. SJ型低温干馏方炉的温度与压力场研究[D]. 西安: 西北大学, 2018. |
MI Wenxing. Study on temperature field and pressure field of SJ low-temperature drying furnace [D]. Xi’an: Northwest University, 2018. | |
23 | 高勇, 闫龙, 李健, 等. 入口直径对SJ低温煤干馏炉内温度及压力的影响[J]. 辽宁化工, 2018, 47(7): 647-648. |
GAO Yong, YAN Long, LI Jian, et al. Influence of inlet diameter on temperature and pressure in SJ low temperature dry distillation furnace [J]. Liaoning Chemical Industry, 2018, 47(7): 647-648. | |
24 | 北京德天御投资管理有限责任公司. 一种气体热载体低温热解炉及气体热载体低温热解方法: CN 201210113134.5 [P]. 2012-09-19. |
Beijing Detianyu Investment Management Limited Liability Company. Gas heat carrier low-temperature pyrolyzing furnace and gas heat carrier low-temperature pyrolyzing method: CN 201210113134.5 [P]. 2012-09-19. | |
25 | 范涛, 初茉. 焦化企业污染防治升级改造措施研究[J]. 煤炭经济研究, 2019, 39(8): 40-45. |
FAN Tao, CHU Mo. Research on upgrade and reform measures of pollution prevention and control in coking enterprises [J]. Coal Economic Research, 2019, 39(8): 40-45. | |
26 | CHEN Xiaohui, ZHENG Danxing, GUO Jing. Energy analysis for low-rank coal based process system to co-produce semicoke, syngas and light oil [J]. Energy, 2013, 52: 279-288. |
27 | YI Qun, FENG Jie, LU Bingchuan, et al. Energy evaluation for lignite pyrolysis by solid heat carrier coupled with gasification [J]. Energy & Fuels, 2013, 27: 4523-4533. |
28 | ZHANG Kun, HE Demin, GUAN Jun, et al. Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis [J]. Energy, 2019, 166: 807-818. |
29 | ZHOU Qi, ZOU Tao, ZHONG Mei, et al. Lignite upgrading by multi-stage fluidized bed pyrolysis [J]. Fuel Processing Technology, 2013, 116: 35-43. |
30 | CHEN Zhaohui, LI Yunjia, LAI Dengguo, et al. Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas [J]. Applied Energy, 2018, 215: 348-355. |
31 | 河南龙成煤高效技术应用有限公司. 一种煤热解设备: CN 201510156413.3 [P]. 2015-07-01. |
Henan Longcheng Coal High Efficiency Technology Application Limited Liability Company. Coal pyrolysis equipment: CN 201510156413.3 [P]. 2015-07-01. | |
32 | LI Airong, WU Daohong, WANG Qicheng, et al. Pyrolysis of long flame coal under steam atmosphere in a fluidised-bed reactor [J]. International Journal of Oil Gas and Coal Technology, 2016, 12(1): 51-62. |
33 | HU Erfeng, ZENG Xi, MA Dachao, et al. Characterization of coal pyrolysis in indirectly heated fixed bed based on field effects [J]. Fuel, 2017, 200: 186-192. |
34 | 张纯. 外热式内构件移动床低阶碎煤热解技术研究[D]. 北京: 中国科学院大学, 2015. |
ZHANG Chun. Pyrolysis of small-size low-rank coal in indirectly heated moving bed with internals [D]. Beijing: The University of Chinese Academy of Sciences, 2015. | |
35 | ZHANG Chun, WU Rongcheng, HU Erfeng, et al. Coal pyrolysis for high-quality tar and gas in 100kg fixed bed enhanced with internals [J]. Energy & Fuels, 2014, 28: 7294-7302. |
36 | 曲洋, 初茉, 郝成亮, 等. 褐煤热碎性对提质工艺的影响分析[J]. 煤炭工程, 2015, 47(12): 118- 120. |
QU Yang, CHU Mo, HAO Chengliang, et al. Impact analysis of lignite heat fragmentation characteristics on upgrading process [J]. Coal Engineering, 2015, 47(12): 118-120. | |
37 | 曲洋, 初茉, 朱书全. 褐煤热碎性对成型及气化的影响[J]. 煤炭技术, 2017, 36(10): 289-290. |
QU Yang, CHU Mo, ZHU Shuquan. Influence of lignite heat fragmentation characteristics on molding and gasification technologies [J]. Coal Technology, 2017, 36(10): 289-290. | |
38 | AKHTAR K, TAHMASEBI A, TIAN Lu, et al. An experimental study of direct reduction of hematite by lignite char [J]. Journal of Thermal Analysis and Calorimetry, 2016, 123(2): 1111-1118. |
39 | AN Hongguang, LIU Zhenqiang, CAO Xiaoxin, et al. Mesoporous lignite-coke as an effective adsorbent for coal gasification wastewater treatment [J]. Environmental Science: Water Research & Technology, 2017, 3: 169-174. |
40 | 戴财胜, 梁丽静, 戴谨泽, 等. 基于温和热解的低阶煤热解半焦成浆性能研究[J]. 煤炭学报, 2015, 40(7): 1654-1659. |
DAI Caisheng, LIANG Lijing, DAI Jinze, et al. Research on the slurry ability of semi-coke from low rank coal pyrolysis under mild conditions [J]. Journal of China Coal Society, 2015, 40(7): 1654-1659. | |
41 | WARAHENA A S K, CHUAH Yew Khoy. Energy recovery efficiency and cost analysis of VOC thermal oxidation pollution control technology [J]. Environmental Science & Technology, 2009, 43: 6101-6105. |
42 | SHEN Yafei, ZHANG Niyu. Facile synthesis of porous carbons from silica-rich rice husk char for volatile organic compounds (VOCs) sorption [J]. Bioresource Technology, 2019, 282: 294-300. |
43 | BAI Yonghui, YAN Lunjing, LI Guanlong, et al. Effects of demineralization on phenols distribution and formation during coal pyrolysis [J]. Fuel, 2014, 134: 368-374. |
44 | GAO Lei, DONG Faqin, DAI Qunwei, et al. Coal tar residues based activated carbon: preparation and characterization [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63: 166-169. |
45 | BOOPATHY R, SEKARAN G. Studies on process development for the separation of sodium chloride from residue after evaporation of reverse osmosis reject solution [J]. Separation and Purification Technology, 2017, 183: 127-135. |
46 | JIANG Zili, MENG Dawei, MU Hongyan, et al. Study on the hydrothermal drying technology of sewage sludge [J]. Science China: Technological Sciences, 2010, 53(1): 160-163. |
47 | WANG Zhipu, SHU Xinqian, ZHU Henan, et al. Characteristics of biochars prepared by co-pyrolysis of sewage sludge and cotton stalk intended for use as soil amendments [J]. Environmental Technology, 2020, 41(11): 1347-1357. |
48 | FRISTAK V, PIPISKA M, SOJA G. Pyrolysis treatment of sewage sludge: a promising way to produce phosphorus fertilizer [J]. Journal of Cleaner Production, 2018, 172: 1772-1778. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[3] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[4] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[5] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[6] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[7] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[8] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[9] | YAO Liming, WANG Yazhuo, FAN Honggang, GU Qing, YUAN Haoran, CHEN Yong. Treatment status of kitchen waste and its research progress of pyrolysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3791-3801. |
[10] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[11] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[12] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
[13] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[14] | JIN Yong, CHENG Yi, BAI Dingrong, ZHANG Chenxi, WEI Fei. Fluidization research and development in China [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2761-2780. |
[15] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |