Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 717-727.DOI: 10.16085/j.issn.1000-6613.2024-0305
• Chemical processes and equipment • Previous Articles Next Articles
LI Xuejing1(), CUI Zhe1, LIU Bin1, LI Chuankun2, TIAN Wende1(
)
Received:
2024-02-21
Revised:
2024-05-20
Online:
2025-03-10
Published:
2025-02-25
Contact:
TIAN Wende
李雪静1(), 崔哲1, 刘彬1, 李传坤2, 田文德1(
)
通讯作者:
田文德
作者简介:
李雪静(1997—),女,硕士研究生,研究方向为化工系统工程。E-mail:4021010038@mails.qust.edu.cn。
基金资助:
CLC Number:
LI Xuejing, CUI Zhe, LIU Bin, LI Chuankun, TIAN Wende. Intelligent risk analysis and prediction of carbon di-hydrogenation and deethanization tower systems[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 717-727.
李雪静, 崔哲, 刘彬, 李传坤, 田文德. 乙烯装置碳二加氢和脱乙烷塔系统智能风险分析与预测[J]. 化工进展, 2025, 44(2): 717-727.
设备编号 | 设备名称 | 设备编号 | 设备名称 |
---|---|---|---|
T-101 | 脱甲烷塔 | T-107 | 甲烷汽提塔 |
T-102 | 脱乙烷塔 | T-108 | 丙烯精馏塔 |
T-103 | 绿油吸收塔 | T-109 | C3再精馏塔 |
T-104 | 乙烯精馏塔 | R1 | 碳二加氢反应器 |
T-105 | 脱丙烷塔 | R2 | 丙二烯转化器 |
T-106 | 脱丁烷塔 | F1 | 闪蒸器 |
设备编号 | 设备名称 | 设备编号 | 设备名称 |
---|---|---|---|
T-101 | 脱甲烷塔 | T-107 | 甲烷汽提塔 |
T-102 | 脱乙烷塔 | T-108 | 丙烯精馏塔 |
T-103 | 绿油吸收塔 | T-109 | C3再精馏塔 |
T-104 | 乙烯精馏塔 | R1 | 碳二加氢反应器 |
T-105 | 脱丙烷塔 | R2 | 丙二烯转化器 |
T-106 | 脱丁烷塔 | F1 | 闪蒸器 |
流股 | 温度T/℃ | 压力P/bar | 流量F/kmol·h-1 |
---|---|---|---|
精馏塔401进料 | -75.80 | 0.73 | 1331.98 |
精馏塔401塔顶出料 | -245.98 | 0.61 | 779.94 |
精馏塔401塔底出料 | -53.36 | 0.66 | 2277.42 |
换热器进料 | -51.20 | 2.57 | 684.43 |
换热器出料 | 10.99 | 2.52 | 684.43 |
精馏塔402进料 | 9.32 | 2.40 | 684.43 |
精馏塔402进料 | -4.37 | 2.39 | 1592.97 |
精馏塔402塔顶出料1 | 1.28 | 2.39 | 1962.87 |
精馏塔402塔底出料2 | 88.49 | 2.42 | 471.36 |
反应器进料 | 104.86 | 2.66 | 2005.49 |
反应器出料 | 146.64 | 2.28 | 1964.77 |
精馏塔403进料1 | -21.33 | 2.04 | 131.51 |
精馏塔403进料2 | -5.56 | 2.05 | 1964.77 |
精馏塔403塔顶出料 | -8.75 | 2.09 | 1933.81 |
精馏塔404进料 | -9.78 | 1.99 | 1933.82 |
精馏塔404塔顶出料 | -32.66 | 1.83 | 411.29 |
精馏塔404塔底出料 | -19.52 | 2.01 | 1258.31 |
精馏塔404侧线采出 | -30.24 | 1.94 | 132.67 |
流股 | 温度T/℃ | 压力P/bar | 流量F/kmol·h-1 |
---|---|---|---|
精馏塔401进料 | -75.80 | 0.73 | 1331.98 |
精馏塔401塔顶出料 | -245.98 | 0.61 | 779.94 |
精馏塔401塔底出料 | -53.36 | 0.66 | 2277.42 |
换热器进料 | -51.20 | 2.57 | 684.43 |
换热器出料 | 10.99 | 2.52 | 684.43 |
精馏塔402进料 | 9.32 | 2.40 | 684.43 |
精馏塔402进料 | -4.37 | 2.39 | 1592.97 |
精馏塔402塔顶出料1 | 1.28 | 2.39 | 1962.87 |
精馏塔402塔底出料2 | 88.49 | 2.42 | 471.36 |
反应器进料 | 104.86 | 2.66 | 2005.49 |
反应器出料 | 146.64 | 2.28 | 1964.77 |
精馏塔403进料1 | -21.33 | 2.04 | 131.51 |
精馏塔403进料2 | -5.56 | 2.05 | 1964.77 |
精馏塔403塔顶出料 | -8.75 | 2.09 | 1933.81 |
精馏塔404进料 | -9.78 | 1.99 | 1933.82 |
精馏塔404塔顶出料 | -32.66 | 1.83 | 411.29 |
精馏塔404塔底出料 | -19.52 | 2.01 | 1258.31 |
精馏塔404侧线采出 | -30.24 | 1.94 | 132.67 |
设备名称 | 温度/℃ | 压力/bar | 流量/kmol·h-1 |
---|---|---|---|
换热器B-1 | 103 | 22.40 | 2011.8 |
反应器R-1 | 148 | 22.85 | 2011.8 |
设备名称 | 温度/℃ | 压力/bar | 流量/kmol·h-1 |
---|---|---|---|
换热器B-1 | 103 | 22.40 | 2011.8 |
反应器R-1 | 148 | 22.85 | 2011.8 |
物流名称 | 温度/℃ | 压力/bar | 流量/kmol·h-1 |
---|---|---|---|
脱乙烷精馏塔进料 | 8.23 | 23.35 | 683.89 |
脱乙烷精馏塔塔顶出料 | -4.22 | 23.17 | 2015.63 |
脱乙烷精馏塔塔底出料 | 90.3813 | 23.53 | 559.33 |
物流名称 | 温度/℃ | 压力/bar | 流量/kmol·h-1 |
---|---|---|---|
脱乙烷精馏塔进料 | 8.23 | 23.35 | 683.89 |
脱乙烷精馏塔塔顶出料 | -4.22 | 23.17 | 2015.63 |
脱乙烷精馏塔塔底出料 | 90.3813 | 23.53 | 559.33 |
1 | LIU Jixiang, ZHOU Xin, YANG Gengfei, et al. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas[J]. Chinese Journal of Chemical Engineering, 2023, 57: 290-308. |
2 | GONG Shixin. Multi-scale energy efficiency recognition and diagnosis scheme for ethylene production based on a hierarchical multi-indicator system[J]. Energy, 2023, 267: 126478. |
3 | XU Yuanyuan, RENIERS Genserik, YANG Ming, et al. Uncertainties and their treatment in the quantitative risk assessment of domino effects: Classification and review[J]. Process Safety and Environmental Protection, 2023, 172: 971-985. |
4 | ZHANG Huaqi, ZHANG Beike, GAO Dong. A new approach of integrating industry prior knowledge for HAZOP interaction[J]. Journal of Loss Prevention in the Process Industries, 2023, 82: 105005. |
5 | SADEGHI Reyhaneh, GOERLANDT Floris. Reasonableness of a proposed system theoretic process analysis (STPA) validation framework: An interview study[J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105064. |
6 | WANG Lipeng, YAN Fang, WANG Fang, et al. FMEA-CM based quantitative risk assessment for process industries—A case study of coal-to-methanol plant in China[J]. Process Safety and Environmental Protection, 2021, 149: 299-311. |
7 | BAROZZI Marco, CONTINI Sergio, RABONI Massimo, et al. Integration of recursive operability analysis, FMECA and FTA for the quantitative risk assessment in biogas plants: Role of procedural errors and components failures[J]. Journal of Loss Prevention in the Process Industries, 2021, 71: 104468. |
8 | AMENDOLA A. Accident sequence dynamic simulation versus event trees[J]. Reliability Engineering & System Safety, 1988, 22(1/2/3/4): 3-25. |
9 | WANG Hangzhou, KHAN Faisal, AHMED Salim, et al. Dynamic quantitative operational risk assessment of chemical processes[J]. Chemical Engineering Science, 2016, 142: 62-78. |
10 | EMAMI Mona, HEJAZI Bijan, KARIMI Mehdi, et al. Quantitative risk assessment and risk reduction of integrated acid gas enrichment and amine regeneration process using Aspen Plus dynamic simulation[J]. Results in Engineering, 2022, 15: 100566. |
11 | LIU Zengkai, MA Qiang, SHI Xuewei, et al. A dynamic quantitative risk assessment method for drilling well control by integrating multi types of risk factors[J]. Process Safety and Environmental Protection, 2022, 167: 162-172. |
12 | SHI Yuntao, ZHAO Lei, ZHOU Meng, et al. A dynamic community gas risk-prediction method based on temporal knowledge graphs[J]. Process Safety and Environmental Protection, 2023, 177: 436-445. |
13 | ADEDIGBA Sunday A, KHAN Faisal, YANG Ming. An integrated approach for dynamic economic risk assessment of process systems[J]. Process Safety and Environmental Protection, 2018, 116: 312-323. |
14 | YU Hongyang. Dynamic risk assessment of complex process operations based on a novel synthesis of soft-sensing and loss function[J]. Process Safety and Environmental Protection, 2017, 105: 1-11. |
15 | CHAU Kevin, DJIRE Abdoulaye, VADDIRAJU Sreeram, et al. Process Risk Index (PRI)-A methodology to analyze the design and operational hazards in the processing facility[J]. Process Safety and Environmental Protection, 2022, 165: 623-632. |
16 | ZEBERT Tristan Lee, LOKHAT David, KURELLA Swamy, et al. Modeling and simulation of ethane cracker reactor using Aspen Plus[J]. South African Journal of Chemical Engineering, 2023, 43: 204-214. |
17 | MALIK Huzaifa, KHAN Huma Warsi, HASSAN SHAH Mansoor Ul, et al. Screening of ionic liquids as green entrainers for ethanol water separation by extractive distillation: COSMO-RS prediction and Aspen Plus simulation[J]. Chemosphere, 2023, 311: 136901. |
18 | MUBASHIR Muhammad, AHSAN Muhammad, AHMAD Iftikhar, et al. Process modeling and simulation of ethylene oxide production by implementing pinch and cost analysis[J]. Ain Shams Engineering Journal, 2022, 13(3): 101585. |
19 | Mikael YAMANEE-NOLIN, ANDERSSON Niklas, NILSSON Bernt, et al. Trajectory optimization of an oscillating industrial two-stage evaporator utilizing a Python-Aspen Plus Dynamics toolchain[J]. Chemical Engineering Research and Design, 2020, 155: 12-17. |
20 | ZADAKBAR O, IMTIAZ S, KHAN F. Dynamic risk assessment and fault detection using a multivariate technique[J]. Process Safety Progress, 2013, 32(4): 365-375. |
21 | ZADAKBAR Omid, KHAN Faisal, IMTIAZ Syed. Development of economic consequence methodology for process risk analysis[J]. Risk Analysis, 2015, 35(4): 713-731. |
22 | ZADAKBAR O, IMTIAZ S, KHAN F. Dynamic risk assessment and fault detection using principal component analysis[J]. Industrial & Engineering Chemistry Research, 2013, 52(2): 809-816. |
23 | SPIRING Fred A. The reflected normal loss function[J]. Canadian Journal of Statistics, 1993, 21(3): 321-330. |
24 | BANGI Mohammed Saad Faizan, KWON Joseph Sang-Il. Deep hybrid modeling of chemical process: Application to hydraulic fracturing[J]. Computers & Chemical Engineering, 2020, 134: 106696. |
25 | BHADRIRAJU Bhavana, KWON Joseph Sang-Il, KHAN Faisal. Risk-based fault prediction of chemical processes using operable adaptive sparse identification of systems (OASIS)[J]. Computers & Chemical Engineering, 2021, 152: 107378. |
26 | RANAWAT Nagendra Singh, PRAKASH Jatin, MIGLANI Ankur, et al. Performance evaluation of LSTM and Bi-LSTM using non-convolutional features for blockage detection in centrifugal pump[J]. Engineering Applications of Artificial Intelligence, 2023, 122: 106092. |
27 | HU Xinmei, YUAN Shasha, XU Fangzhou, et al. Scalp EEG classification using deep Bi-LSTM network for seizure detection[J]. Computers in Biology and Medicine, 2020, 124: 103919. |
28 | SUN Weifeng, LI Weihua, ZHANG Dezhi, et al. Lost circulation monitoring using bi-directional LSTM and data augmentation[J]. Geoenergy Science and Engineering, 2023, 225: 211660. |
29 | WANG Shaochen, TIAN Wende, LI Chuankun, et al. Mechanism-based deep learning for tray efficiency soft-sensing in distillation process[J]. Reliability Engineering & System Safety, 2023, 231: 109012. |
30 | LI Zongxiang, YANG Yan, LI Liwei, et al. A weighted Pearson correlation coefficient based multi-fault comprehensive diagnosis for battery circuits[J]. Journal of Energy Storage, 2023, 60: 106584. |
[1] | CHEN Kexin, LI Xi, CHANG Fucheng, WU Xiaoyi, LOU Jiacheng, LI Huixiong. Investigation on pressure drop and characteristics of flow-pattern transition of steam-water two-phase flows in helically coiled tubes [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 613-624. |
[2] | ZHANG Qian, LIU Xin, WANG Bing, XU Jing, CAO Chenxi. Quantitative analysis of domino effects in large tank farms under various wind conditions and accident scenarios [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1170-1182. |
[3] | SUN Yuepeng, SUN Yanji, PAN Yanqiu, WANG Chengyu. Prediction of CO2 content in Rectisol purified gas based on BO-LSTM [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 688-697. |
[4] | HUANG Zhengfeng, WANG Heng, HONG Hao, ZHU Guorui. Characterization of vortex shedding in concentric circular transition arrangement tube bundles [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 698-705. |
[5] | YU Hai, LUAN Zhiyong, JI Yipeng, AN Shenfa, CHEN Jiaqing, SI Zheng, REN Qiang, SUN Fengxu, SONG Zerun. Calculation method and impact analysis of short-circuit flow in dynamic hydrocyclone [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 135-144. |
[6] | QIAO Lei, ZHANG Yaxin, WEI Bo, RAN Wenshen, MA Jingrong, WANG Feng. Optimization of burner layout parameters and operating parameters of oxy-thermal entrained-flow calcium carbide reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 145-157. |
[7] | XING Lei, ZHOU Xiaoqing, JIANG Minghu, ZHAO Lixin, LI Xinya, CHEN Dehai. Motion behavior and deformation characteristics of discrete oil droplets in a sudden contraction and sudden expansion round pipe [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 27-37. |
[8] | LI Hao, SUN Yunan, LI Jian, TAO Junyu, CHENG Zhanjun, YAN Beibei, CHEN Guanyi. Co-gasification characteristics of excavated waste and municipal solid waste blends [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 525-537. |
[9] | SUN Jianchen, YANG Jie, LI Jun, SUN Huidong, NIU Junmin, LIAO Yifei, REN Junying, SHANG Hui. Effect of catalyst particle arrangements on microwave heating [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 57-65. |
[10] | LI Xin, WANG Wei, ZHANG Yu, XIE Qiuyu, YUAN Hao. Separation of ethyl acetate+ethanol+water system: Ionic liquids screening, vapor liquid equilibrium and process simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 75-85. |
[11] | ZHANG Tianhao, LI Shuangxi, JIA Xiangji, HU Dingguo, CUI Ruizhuo, LI Shicong. Analysis of the effect of thermal deformation and friction wear of reinforced DLC film on the end face of high-speed mechanical seals [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 121-133. |
[12] | MAO Ningxuan, WAN Xiaowei, JU Jie, HU Yanjie, JIANG Hao. Numerical simulation and structural optimization of flow field in industrial gas-solid fluidized beds based on CFD-PBM [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 13-20. |
[13] | SU Yao, CHEN Zhanxiu, YANG Li, XING Hewei, HU Hecang, LI Yuanhua. Effect of heat source temperature on flow heat transfer in asymmetric nanochannels [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 144-153. |
[14] | ZHANG Weiye, ZHU Xiaowu, LUO Yonghao, WANG Zhi. Numerical simulation of mixing performance of composite phyllotaxy microfluidic channel [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 154-165. |
[15] | ZHAO Qi, QIAN Xiaodong, XIAO Fangxiong, CHEN Li, XU Zhan. Construction and application analysis of a quantitative evaluation system for urban gas safety resilience [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 174-179. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 16
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |