Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 144-153.DOI: 10.16085/j.issn.1000-6613.2024-0184
• Chemical processes and equipment • Previous Articles Next Articles
SU Yao(), CHEN Zhanxiu(), YANG Li, XING Hewei, HU Hecang, LI Yuanhua
Received:
2024-01-24
Revised:
2024-03-18
Online:
2024-12-06
Published:
2024-11-20
Contact:
CHEN Zhanxiu
苏瑶(), 陈占秀(), 杨历, 邢赫威, 呼和仓, 李源华
通讯作者:
陈占秀
作者简介:
苏瑶(2000—),女,硕士研究生,研究方向为微尺度流体流动及强化传热。E-mail:1033751287@qq.com。
基金资助:
CLC Number:
SU Yao, CHEN Zhanxiu, YANG Li, XING Hewei, HU Hecang, LI Yuanhua. Effect of heat source temperature on flow heat transfer in asymmetric nanochannels[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 144-153.
苏瑶, 陈占秀, 杨历, 邢赫威, 呼和仓, 李源华. 热源温度对非对称纳米通道流动换热的影响[J]. 化工进展, 2024, 43(S1): 144-153.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0184
案例 | 凹槽间距 d/Å | 凹槽长度 l/Å | 凹槽宽度 w/Å | 凹槽高度 h/Å | 凹槽数量n |
---|---|---|---|---|---|
1 | 21.7 | 18.1 | 18.1 | 10.86 | 2 |
2 | 16.25 | 18.1 | 18.1 | 10.86 | 3 |
3 | 13 | 18.1 | 18.1 | 10.86 | 4 |
4 | 10.8 | 18.1 | 18.1 | 10.86 | 5 |
案例 | 凹槽间距 d/Å | 凹槽长度 l/Å | 凹槽宽度 w/Å | 凹槽高度 h/Å | 凹槽数量n |
---|---|---|---|---|---|
1 | 21.7 | 18.1 | 18.1 | 10.86 | 2 |
2 | 16.25 | 18.1 | 18.1 | 10.86 | 3 |
3 | 13 | 18.1 | 18.1 | 10.86 | 4 |
4 | 10.8 | 18.1 | 18.1 | 10.86 | 5 |
原子类型 | 能量参数ɛ/kcal∙mol-1 | 特征长度σ/Å |
---|---|---|
O-O | 0.1554 | 3.166 |
H-O/Cu | 0 | 0 |
Cu-Cu | 9.44 | 2.34 |
O-Cu | 0.26 | 2.753 |
原子类型 | 能量参数ɛ/kcal∙mol-1 | 特征长度σ/Å |
---|---|---|
O-O | 0.1554 | 3.166 |
H-O/Cu | 0 | 0 |
Cu-Cu | 9.44 | 2.34 |
O-Cu | 0.26 | 2.753 |
案例 | 平均速度/m·s-1 | |||
---|---|---|---|---|
T=300K | T=320K | T=340K | T=360K | |
1 | 15.71 | 22.97(↑46.2%) | 27.76(↑76.7%) | 34.01(↑116.5%) |
2 | 15.52 | 19.33(↑24.5%) | 25.14(↑62.0%) | 30.91(↑99.2%) |
3 | 12.59 | 15.88(↑26.1%) | 19.51(↑55.0%) | 25.78(↑104.8%) |
4 | 10.51 | 13.96(↑32.8%) | 17.04(↑62.1%) | 22.78(↑116.7%) |
案例 | 平均速度/m·s-1 | |||
---|---|---|---|---|
T=300K | T=320K | T=340K | T=360K | |
1 | 15.71 | 22.97(↑46.2%) | 27.76(↑76.7%) | 34.01(↑116.5%) |
2 | 15.52 | 19.33(↑24.5%) | 25.14(↑62.0%) | 30.91(↑99.2%) |
3 | 12.59 | 15.88(↑26.1%) | 19.51(↑55.0%) | 25.78(↑104.8%) |
4 | 10.51 | 13.96(↑32.8%) | 17.04(↑62.1%) | 22.78(↑116.7%) |
案 例 | Nu(近下壁面) | |||
---|---|---|---|---|
T=300K | T=320K | T=340K | T=360K | |
1 | 6.20 | 5.48 | 4.98 | 4.46 |
2 | 6.99(↑12.7%) | 6.04(↑10.2%) | 5.47(↑9.8%) | 4.89(↑9.6%) |
3 | 7.53(↑21.4%) | 6.86(↑25.2%) | 6.00(↑20.5%) | 5.28 (↑18.4%) |
4 | 7.94(↑28.1%) | 7.24(↑32.1%) | 6.42(↑28.9%) | 5.62(↑26.0%) |
案 例 | Nu(近下壁面) | |||
---|---|---|---|---|
T=300K | T=320K | T=340K | T=360K | |
1 | 6.20 | 5.48 | 4.98 | 4.46 |
2 | 6.99(↑12.7%) | 6.04(↑10.2%) | 5.47(↑9.8%) | 4.89(↑9.6%) |
3 | 7.53(↑21.4%) | 6.86(↑25.2%) | 6.00(↑20.5%) | 5.28 (↑18.4%) |
4 | 7.94(↑28.1%) | 7.24(↑32.1%) | 6.42(↑28.9%) | 5.62(↑26.0%) |
案 例 | Nu(近上壁面) | |||
---|---|---|---|---|
T=300K | T=320K | T=340K | T=360K | |
1 | 3.34 | 3.07 | 2.81 | 2.58 |
2 | 3.68(↑10.2%) | 3.25(↑5.9%) | 2.97(↑5.69%) | 2.78(↑7.8%) |
3 | 3.91(↑17.1%) | 3.62(↑17.9%) | 3.20(↑13.9%) | 2.96(↑14.7%) |
4 | 4.09(↑22.4%) | 3.77(↑22.8%) | 3.39(↑20.6%) | 3.11(↑20.5%) |
案 例 | Nu(近上壁面) | |||
---|---|---|---|---|
T=300K | T=320K | T=340K | T=360K | |
1 | 3.34 | 3.07 | 2.81 | 2.58 |
2 | 3.68(↑10.2%) | 3.25(↑5.9%) | 2.97(↑5.69%) | 2.78(↑7.8%) |
3 | 3.91(↑17.1%) | 3.62(↑17.9%) | 3.20(↑13.9%) | 2.96(↑14.7%) |
4 | 4.09(↑22.4%) | 3.77(↑22.8%) | 3.39(↑20.6%) | 3.11(↑20.5%) |
1 | TANG Heng, TANG Yong, WAN Zhenping, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223: 383-400. |
2 | JOSEPH Pierre, TABELING Patrick. Direct measurement of the apparent slip length[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(3): 035303. |
3 | TOGHRAIE Davood, HEKMATIFAR Maboud, SALEHIPOUR Yasaman, et al. Molecular dynamics simulation of Couette and Poiseuille water-copper nanofluid flows in rough and smooth nanochannels with different roughness configurations[J]. Chemical Physics, 2019, 527: 110505. |
4 | BITSANIS Ioannis, MAGDA Jules J, TIRRELL Matthew, et al. Molecular dynamics of flow in micropores[J]. The Journal of Chemical Physics, 1987, 87(3): 1733-1750. |
5 | GHOLAMREZA Ahmadi, Jahangiri ALI, MOHAMMAD Ameri. The effects of transferred heat and wall material on thermal behavior of a nano-grooved micro-heat pipe, molecular dynamics simulation[J]. Engineering Analysis with Boundary Elements, 2024, 160: 1-13. |
6 | PIT R, HERVET H, LEGER L. Direct experimental evidence of slip in hexadecane: Solid interfaces[J]. Physical Review Letters, 2000, 85(5): 980-983. |
7 | CAO Bingyang, CHEN Min, GUO Zengyuan. Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation[J]. International Journal of Engineering Science, 2006, 44(13/14): 927-937. |
8 | JING Dalei, BHUSHAN Bharat. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review[J]. Journal of Colloid and Interface Science, 2015, 454: 152-179. |
9 | JUNG Jung-Yeul, KWAK Ho-Young. Effect of surface condition on boiling heat transfer from silicon chip with submicron-scale roughness[J]. International Journal of Heat and Mass Transfer, 2006, 49(23/24): 4543-4551. |
10 | SONG Zhao, SHANG Xueshuo. Investigation of surface structure-wettability coupling on heat transfer and flow characteristics in nanochannels[J]. Applied Thermal Engineering, 2023, 218: 119362. |
11 | THOMPSON Peter A, ROBBINS Mark O. Shear flow near solids: Epitaxial order and flow boundary conditions[J]. Physical Review A, 1990, 41(12): 6830-6837. |
12 | SONG Zhao, CUI Zheng, CAO Qun, LIU Yu, LI Junhui. Molecular dynamics study of convective heat transfer in ordered rough nanochannels[J]. Journal of Molecular Liquids, 2021, 337: 116052. |
13 | 徐超, 何雅玲, 王勇. 纳米通道滑移流动的分子动力学模拟研究[J]. 工程热物理学报, 2005, 26(6): 912-914. |
XU Chao, HE Yaling, WANG Yong. Molecular dynamics studies of velocity slip phenomena in a nanochannel[J]. Journal of Engineering Thermophysics, 2005, 26(6): 912-914. | |
14 | 刘洁, 刘万强, 孙林萍, 等. 温度对有机物传热影响的分子动力学模拟及微观机理研究[J]. 原子与分子物理学报, 2023, 40(3): 69-78. |
LIU Jie, LIU Wanqiang, SUN Linping, et al. Molecular dynamics simulation and microscopic mechanism study on the effect of temperature on heat conduction of liquid organic[J]. Journal of Atomic and Molecular Physics, 2023, 40(3): 69-78. | |
15 | 陈洁敏. 微纳尺度气体流动速度滑移的分子动力学研究[D]. 杭州: 中国计量大学, 2018. |
CHEN Jiemin. Molecular dynamics study on the velocity slip of micro/nano scale gas flow[D]. Hangzhou: China University of Metrology, 2018. | |
16 | 梅涛, 陈占秀, 杨历, 等. 非对称纳米通道内界面热阻的分子动力学研究[J]. 物理学报, 2020, 69(22): 326-338. |
MEI Tao, CHEN Zhanxiu, YANG Li, et al. Molecular dynamics study of interface thermal resistance in asymmetric nanochannel[J]. Acta Physica Sinica, 2020, 69(22): 326-338. | |
17 | 高志强. 离子液体及其纳米流体热物性的分子动力学模拟[D]. 吉林: 东北电力大学, 2023. |
GAO Zhiqiang. Molecular dynamics simulation on thermophysical properties of ionic liquid and ionic liquid-based nanofluids[D]. Jilin: Northeast Dianli University, 2023. | |
18 | 周健, 陆小华, 王延儒, 等. Lennard-Jones流体固液相变的分子动力学模拟[J]. 南京化工大学学报, 1997, 19(2): 20-25. |
ZHOU Jian, LU Xiaohua, WANG Yanru, et al. Molecular dynamics simulation for the solid liquid transition of Lennard-Jones fluid[J]. Journal of Nanjing University of Chemical Technology (Natural Science Edition), 1997, 19(2): 20-25. | |
19 | 白璞. 粗糙度和润湿性影响沸腾的分子动力学研究[D]. 北京: 华北电力大学, 2022. |
BAI Pu. Molecular dynamics study of boiling affected by roughness and wettability[D]. Beijing: North China Electric Power University, 2022. | |
20 | BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. The Journal of Physical Chemistry, 1987, 91(24): 6269-6271. |
21 | WU Nini, ZENG Liangcai, FU Ting, et al. Mechanism of heat transfer enhancement by nanochannels copper plate interface wettability: A molecular dynamics study[J]. International Journal of Thermal Sciences, 2021, 159: 106589. |
22 | 曹炳阳, 陈民, 过增元. 粗糙微通道内气体流动的分子动力学研究[J]. 工程热物理学报, 2004, 25(S1): 131-134. |
CAO Bingyang, CHEN Min, GUO Zengyuan. Molecular dynamics study on gas flow in rough microchannels[J]. Journal of Engineering Thermophysics, 2004, 25(S1): 131-134. | |
23 | 张龙艳. 微尺度下流体的流动换热及核化沸腾的分子动力学研究[D]. 北京: 华北电力大学, 2019. |
ZHANG Longyan. Molecular dynamics simulation of fluid flow and heat transfer and nucleate boiling in microscale[D]. Beijing: North China Electric Power University, 2019. | |
24 | 孙杰, 何雅玲, 李印实, 等. 膜状冷凝初期过程的分子动力学模拟研究[J]. 西安交通大学学报, 2007, 41(9): 1087-1091. |
SUN Jie, HE Yaling, LI Yinshi, et al. Molecular dynamics study on early stage of filmwise condensation[J]. Journal of Xi'an Jiaotong University, 2007, 41(9): 1087-1091. | |
25 | 刘峰瑞, 陈占秀, 李源华. 混合润湿性柱状纳米结构对铜板上纳米氩膜沸腾传热的影响[J]. 原子与分子物理学报, 2024, 41(3): 66-76. |
LIU Fengrui, CHEN Zhanxiu, LI Yuanhua. Effects of columnar nanostructures with mixed wettability on explosive boiling heat transfer of nanoscale argon film over copper plate[J]. Journal of Atomic and Molecular Physics, 2024, 41(3): 66-76. | |
26 | YAO Shuting, WANG Jiansheng, JIN Shufeng, et al. Atomistic insights into the microscope mechanism of solid-liquid interaction influencing convective heat transfer of nanochannel[J]. Journal of Molecular Liquids, 2023, 371: 121105. |
[1] | ZHANG Tianhao, LI Shuangxi, JIA Xiangji, HU Dingguo, CUI Ruizhuo, LI Shicong. Analysis of the effect of thermal deformation and friction wear of reinforced DLC film on the end face of high-speed mechanical seals [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 121-133. |
[2] | ZHANG Qing, HUANG Lihao, TAO Leren, ZHU Tianyi, JIN Yunfei. Experimental on the flow boiling heat transfer characteristics of R513A insides horizontal tubes with different thread structures [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 134-143. |
[3] | ZHANG Weiye, ZHU Xiaowu, LUO Yonghao, WANG Zhi. Numerical simulation of mixing performance of composite phyllotaxy microfluidic channel [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 154-165. |
[4] | YANG Huimin, DU Jiali, QUAN Yawen, WU Shengxiao, JIN Jiao, WU Feng. CFD simulation investigation of heat transfer characteristics in a downer bed with side nozzle [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 32-42. |
[5] | YIN Ran, MU Ye, HUO Fuyong, CAO Qinliang, LIN Ganggui, WANG Yijie, HUANG Qiyu. Influence of crude oil composition and wax crystal structure on the damage and recovery of JH shale oil structure [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 590-596. |
[6] | TAO Yi, ZHANG Chen, HU Yijiong, QIU Tong. Molecular reconstruction model of vacuum gas oil based on molecular structural distribution [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 71-76. |
[7] | QI Sijiu, TAN Wei, LIN Wenjing, HAN Peize, ZHU Guorui. Test method for fluid excitation force around a heat exchange tube in a two-phase flow tunnel [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 85-93. |
[8] | ZHAO Jilong, MA Yinghua, HUANG Guoqing, SHEN Mingyu, CHEN Hongxia. Optimization design of cesium heat pipe based on orthogonal test [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 94-105. |
[9] | MU Ming, ZHAO Weiwei, CHEN Guangmeng, LIU Xiaoqing. Research progress of strain sensor based on laser-induced graphene [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4970-4979. |
[10] | LI Meixuan, CHENG Jianfeng, HUANG Guoyong, XU Shengming, YU Fengshan, WENG Yaqing, CAO Caifang, WEN Jiawei, WANG Junlian, WANG Chunxia, GU Bintao, ZHANG Yuanhua, LIU Bin, WANG Caiping, PAN Jianming, XU Zeliang, WANG Chong, WANG Ke. Synthesis and electrochemical mechanism of high voltage lithium nickel manganate cathode materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5086-5094. |
[11] | WANG Yucheng, GUO Xiong, LUAN Xinqi, ZHOU Jian, LI Xiang, XING Linguang, ZHOU Xueyun, LIU Ying, WANG Deyong, WU Xuejuan, PAN Qi, LIU Jianxin, ZHAO Zhenxia, ZHAO Zhongxing. Production process optimization of vitamin U and its thermal decomposition mechanism [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5157-5167. |
[12] | LI Sheng, CHEN Yazhou, JIANG Wei, PENG Jie, FAN Caiwei, SHAO Meng. Numerical simulation of proton exchange membrane fuel cell catalyst ink mixing process [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4800-4809. |
[13] | CUI Yi, LI Mengyuan, YANG Lu, LI Haidong, ZHANG Qiqi, CHANG Chenglin, WANG Yufei. New method for automatic design of intensified shell and tube heat exchanger with twisted-tape insert [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4824-4832. |
[14] | ZHANG Wei, SONG Quanbin, ZHOU Yunhe, DONG Mengyao, LI Jie, WU Qiao, FU Yehao, LIANG Yaocheng, YIN Yanshan, CHENG Shan, SONG Jian. Selectivity of ion conductive membranes in all-vanadium flow battery [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4859-4870. |
[15] | ZHENG Qingyu, JIN Guangyuan, FENG Wenkai, ZHU Zhengshan, ZHOU Yifan, TENG Houchang, LI Zhenfeng, SONG Chunfang, SONG Feihu, LI Jing. Numerical analysis of mixed characteristics of chaotic C-type geometric flows coupling electromagnetic thermal characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4262-4272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |