Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 94-105.DOI: 10.16085/j.issn.1000-6613.2024-0919
• Chemical processes and equipment • Previous Articles Next Articles
ZHAO Jilong1,2(), MA Yinghua1,2, HUANG Guoqing1,2, SHEN Mingyu2, CHEN Hongxia1,2()
Received:
2024-06-05
Revised:
2024-09-22
Online:
2024-12-06
Published:
2024-11-20
Contact:
CHEN Hongxia
赵吉隆1,2(), 马英华1,2, 黄国庆1,2, 沈明芋2, 陈宏霞1,2()
通讯作者:
陈宏霞
作者简介:
赵吉隆(2000—),男,硕士研究生,研究方向为中高温热管技术。E-mail:18932270323@163.com。
基金资助:
CLC Number:
ZHAO Jilong, MA Yinghua, HUANG Guoqing, SHEN Mingyu, CHEN Hongxia. Optimization design of cesium heat pipe based on orthogonal test[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 94-105.
赵吉隆, 马英华, 黄国庆, 沈明芋, 陈宏霞. 基于正交试验的铯热管优化设计[J]. 化工进展, 2024, 43(S1): 94-105.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0919
试验 | 影响因素 | 数值计算结果 | |||||
---|---|---|---|---|---|---|---|
长径比 | 充液率 | 倾角 | 丝网目数 | 均温平均差 | 热阻 | A值 | |
case1 | 15.62 | 8.8% | 90° | 50 | 44.48 | 0.08 | 1.11 |
case2 | 15.62 | 12% | 45° | 100 | 39.14 | 0.06 | 1.09 |
case3 | 15.62 | 15% | 25° | 200 | 52.41 | 0.08 | 1.11 |
case4 | 15.62 | 18% | 10° | 400 | 139.16 | 0.18 | 1.27 |
case5 | 17.18 | 8.8% | 45° | 200 | 56.12 | 0.09 | 1.12 |
case6 | 17.18 | 12% | 90° | 400 | 35.66 | 0.04 | 1.06 |
case7 | 17.18 | 15% | 10° | 50 | 97.81 | 0.14 | 1.22 |
case8 | 17.18 | 18% | 25° | 100 | 35.96 | 0.04 | 1.06 |
case9 | 18.75 | 8.8% | 25° | 400 | 60.65 | 0.09 | 1.13 |
case10 | 18.75 | 12% | 10° | 200 | 225.78 | 0.31 | 1.44 |
case11 | 18.75 | 15% | 90° | 100 | 55.39 | 0.10 | 1.15 |
case12 | 18.75 | 18% | 45° | 50 | 39.57 | 0.05 | 1.08 |
case13 | 20.31 | 8.8% | 10° | 100 | 227.74 | 0.31 | 1.51 |
case14 | 20.31 | 12% | 25° | 50 | 83.11 | 0.13 | 1.19 |
case15 | 20.31 | 15% | 45° | 400 | 54.48 | 0.09 | 1.13 |
case16 | 20.31 | 18% | 90° | 200 | 66.71 | 0.13 | 1.19 |
试验 | 影响因素 | 数值计算结果 | |||||
---|---|---|---|---|---|---|---|
长径比 | 充液率 | 倾角 | 丝网目数 | 均温平均差 | 热阻 | A值 | |
case1 | 15.62 | 8.8% | 90° | 50 | 44.48 | 0.08 | 1.11 |
case2 | 15.62 | 12% | 45° | 100 | 39.14 | 0.06 | 1.09 |
case3 | 15.62 | 15% | 25° | 200 | 52.41 | 0.08 | 1.11 |
case4 | 15.62 | 18% | 10° | 400 | 139.16 | 0.18 | 1.27 |
case5 | 17.18 | 8.8% | 45° | 200 | 56.12 | 0.09 | 1.12 |
case6 | 17.18 | 12% | 90° | 400 | 35.66 | 0.04 | 1.06 |
case7 | 17.18 | 15% | 10° | 50 | 97.81 | 0.14 | 1.22 |
case8 | 17.18 | 18% | 25° | 100 | 35.96 | 0.04 | 1.06 |
case9 | 18.75 | 8.8% | 25° | 400 | 60.65 | 0.09 | 1.13 |
case10 | 18.75 | 12% | 10° | 200 | 225.78 | 0.31 | 1.44 |
case11 | 18.75 | 15% | 90° | 100 | 55.39 | 0.10 | 1.15 |
case12 | 18.75 | 18% | 45° | 50 | 39.57 | 0.05 | 1.08 |
case13 | 20.31 | 8.8% | 10° | 100 | 227.74 | 0.31 | 1.51 |
case14 | 20.31 | 12% | 25° | 50 | 83.11 | 0.13 | 1.19 |
case15 | 20.31 | 15% | 45° | 400 | 54.48 | 0.09 | 1.13 |
case16 | 20.31 | 18% | 90° | 200 | 66.71 | 0.13 | 1.19 |
评价指标 | k1 | k2 | k3 | k4 | K1×104 | K2×104 | K3×104 | K4×104 | F值 |
---|---|---|---|---|---|---|---|---|---|
均温平均差 | 275.22 | 225.58 | 384.41 | 432.06 | 75.75 | 5.09 | 14.55 | 18.67 | 4.56 |
389.02 | 383.72 | 260.12 | 281.42 | 151.33 | 14.72 | 6.77 | 7.92 | 2.3 | |
202.27 | 189.34 | 232.16 | 690.51 | 40.91 | 3.58 | 5.39 | 47.68 | 29.73 | |
264.99 | 358.25 | 401.05 | 289.98 | 70.22 | 12.83 | 16.08 | 8.41 | 1.97 | |
热阻 | 0.42 | 0.33 | 0.57 | 0.67 | 0.18 | 0.11 | 0.32 | 0.45 | 10.58 |
0.59 | 0.56 | 0.42 | 0.42 | 0.35 | 0.31 | 0.18 | 0.17 | 3.37 | |
0.37 | 0.31 | 0.35 | 0.96 | 0.14 | 0.09 | 0.12 | 0.92 | 43.98 | |
0.41 | 0.54 | 0.61 | 0.42 | 0.17 | 0.29 | 0.38 | 0.17 | 4.43 | |
干烧温度 | 4.59 | 4.47 | 4.82 | 5.03 | 21.11 | 20.04 | 23.23 | 25.39 | 13.55 |
4.89 | 4.79 | 4.63 | 4.62 | 23.87 | 22.98 | 21.46 | 21.34 | 3.29 | |
4.53 | 4.44 | 4.5 | 5.45 | 20.55 | 19.72 | 20.29 | 29.75 | 50.74 | |
4.61 | 4.83 | 4.89 | 4.61 | 21.24 | 23.29 | 23.88 | 21.26 | 4.55 |
评价指标 | k1 | k2 | k3 | k4 | K1×104 | K2×104 | K3×104 | K4×104 | F值 |
---|---|---|---|---|---|---|---|---|---|
均温平均差 | 275.22 | 225.58 | 384.41 | 432.06 | 75.75 | 5.09 | 14.55 | 18.67 | 4.56 |
389.02 | 383.72 | 260.12 | 281.42 | 151.33 | 14.72 | 6.77 | 7.92 | 2.3 | |
202.27 | 189.34 | 232.16 | 690.51 | 40.91 | 3.58 | 5.39 | 47.68 | 29.73 | |
264.99 | 358.25 | 401.05 | 289.98 | 70.22 | 12.83 | 16.08 | 8.41 | 1.97 | |
热阻 | 0.42 | 0.33 | 0.57 | 0.67 | 0.18 | 0.11 | 0.32 | 0.45 | 10.58 |
0.59 | 0.56 | 0.42 | 0.42 | 0.35 | 0.31 | 0.18 | 0.17 | 3.37 | |
0.37 | 0.31 | 0.35 | 0.96 | 0.14 | 0.09 | 0.12 | 0.92 | 43.98 | |
0.41 | 0.54 | 0.61 | 0.42 | 0.17 | 0.29 | 0.38 | 0.17 | 4.43 | |
干烧温度 | 4.59 | 4.47 | 4.82 | 5.03 | 21.11 | 20.04 | 23.23 | 25.39 | 13.55 |
4.89 | 4.79 | 4.63 | 4.62 | 23.87 | 22.98 | 21.46 | 21.34 | 3.29 | |
4.53 | 4.44 | 4.5 | 5.45 | 20.55 | 19.72 | 20.29 | 29.75 | 50.74 | |
4.61 | 4.83 | 4.89 | 4.61 | 21.24 | 23.29 | 23.88 | 21.26 | 4.55 |
1 | JOSE Jobin, KUMAR HOTTA Tapano. A comprehensive review of heat pipe: Its types, incorporation techniques, methods of analysis and applications[J]. Thermal Science and Engineering Progress, 2023, 42: 101860. |
2 | LIU Shiyu, HU Jianying, AN Ruifeng, et al. A special-shaped sodium heat pipe with a “bridge-type” artery for coupling free-piston Stirling generator and fission reactor[J]. Applied Thermal Engineering, 2024, 245: 122768. |
3 | ANAND R S, LI Ang, HUANG Wenbo, et al. Super-long gravity heat pipe for geothermal energy exploitation — A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2024, 193: 114286. |
4 | ALDEBIE Faisal, Kevin FERNANDEZ-COSIALS, HASSAN Yassin. Thermal-mechanical safety analysis of heat pipe micro reactor[J]. Nuclear Engineering and Design, 2024, 420: 113003. |
5 | 韩冶, 柴宝华, 王泽鸣, 等. 中温热管工质选型与试验研究[J]. 科技创新导报, 2019, 16(13): 101-103, 105. |
HAN Ye, CHAI Baohua, WANG Zeming, et al. Selection and experimental study of medium-temperature heat pipe working fluid [J]. Science and Technology Innovation Herald, 2019, 16(13): 101-103, 105. | |
6 | LI S N, HUANG J C, MA B B, et al. Optimized core design and shield analysis of a medium temperature heat pipe cooled reactor[J]. Nuclear Engineering and Design, 2023, 414: 112605. |
7 | WONG Shwin-Chung, DENG Maoshen. Performance tests on triple composite mesh-groove-powder wicks in a visualizable flat-plate heat pipe[J]. International Journal of Heat and Mass Transfer, 2024, 219: 124912. |
8 | SU Zipei, HU Yanxin, ZHENG Shaobin, et al. Recent advances in visualization of pulsating heat pipes: A review[J]. Applied Thermal Engineering, 2023, 221: 119867. |
9 | JIANG Weijia, TANG Aikun, FAN Gaoting, et al. Heat transfer characteristics of non-uniform channels flat heat pipe with micro pillar arrays and its application in power battery cooling[J]. Applied Thermal Engineering, 2024, 249: 123422. |
10 | LIU Wenbin, ZHOU Tao, HUANG Dongli, et al. Heat transfer performance of high-temperature heat pipe startup in small heat pipe reactors[J]. Annals of Nuclear Energy, 2024, 202: 110477. |
11 | ALIREZA MOSTAFAVI Seyed, KHALILI Mohammad, SAEED KESHVARI TABATABAEI Seyed, et al. Design and fabrication of a heat pipe and thermoelectric cooler-based food delivery box for vehicles[J]. Applied Thermal Engineering, 2024, 249: 123401. |
12 | SEO JinHyeuk, KANG Sukkyung, KIM Kyuil, et al. Compact heat pipe heat exchanger for waste heat recovery within a low-temperature range[J]. International Communications in Heat and Mass Transfer, 2024, 155: 107550. |
13 | CUI Jiarong, LING Weisong, ZHOU Wei, et al. Influence of microchannel condenser with different change rate of cross-sections along the flow field on the anti-gravity performance of loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2024, 224: 125305. |
14 | PAN Rui, ZHANG Kefan, WANG Weixiang, et al. Heat transfer characteristics analysis of heat pipe based on COMSOL[J]. Annals of Nuclear Energy, 2024, 204: 110549. |
15 | MA Yugao, WANG Xueqing, YU Hongxing, et al. Capillary limit of a sodium screen-wick heat pipe[J]. Applied Thermal Engineering, 2023, 232: 120972. |
16 | MA Yugao, ZHANG Yingnan, YU Hongxing, et al. Capillary evaporating film model for a screen-wick heat pipe[J]. Applied Thermal Engineering, 2023, 225: 120155. |
17 | LI Wanrun, LIANG Zhengzhao, LI Li, et al. Modeling of heat transfer and thermal cracking in brittle materials using Finite-Discrete Element Method (FDEM) with a heat pipe model and node binding scheme[J]. Engineering Analysis with Boundary Elements, 2024, 165: 105768. |
18 | GUO Ziang, LIU Limin, LIU Ziyin, et al. Development and application of a transient analysis code for heat pipe cooled reactor systems[J]. Nuclear Engineering and Design, 2024, 419: 112979. |
19 | LIANG Yifu, BAI Jingjing, YAN Caiman, et al. Experimental investigation on a 0.5-metre-long aluminum flat heat pipe for thermal management in electronic devices[J]. Applied Thermal Engineering, 2024, 241: 122211. |
20 | HUANG Pei-Hsun, Taehwan AHN, MANERA Annalisa, et al. Investigation of key parameters for the operation of a sodium heat pipe with visualization using X-ray radiography[J]. Applied Thermal Engineering, 2024, 236: 121867. |
21 | 赵吉隆, 郭宇翔, 陈宏霞, 等. 竖直铯热管传热特性的实验和数值模拟[J]. 化工进展, 2024, 43(4): 1711-1719. |
ZHAO Jilong, GUO Yuxiang, CHEN Hongxia, et al. Experimental and numerical simulation on heat transfer characteristics of vertical cesium heat pipes[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1711-1719. | |
22 | WANG Dahai, MA Yugao, HONG Fangjun. Three-dimensional CFD simulation of geyser boiling in high-temperature sodium heat pipe[J]. Nuclear Engineering and Technology, 2024, 56(6): 2029-2038. |
23 | WANG Xiaoyuan, SHI Yuwen, LIU Tiancheng, et al. CFD modeling of liquid-metal heat pipe and hydrogen inactivation simulation[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123490. |
24 | WANG Xiaoyuan, ZHU Yuezhao, WANG Yinfeng. Development of pressure-based phase change model for CFD modelling of heat pipes[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118763. |
25 | 陈家绪. 重力热管传热特性的数值模拟与实验研究及热管式空预器优化设计[D]. 太原: 太原理工大学, 2022. |
CHEN Jiaxu. Numerical simulation and experimental study on heat transfer characteristics of gravity heat pipe and optimal design of heat pipe air preheater[D]. Taiyuan: Taiyuan University of Technology, 2022. | |
26 | JIN Ik Jae, BANG In Cheol. Analysis of geyser boiling in liquid metal heat pipe: Impact on startup and shutdown, fuel temperature, and heat removal performance[J]. International Journal of Heat and Mass Transfer, 2024, 224: 125379. |
27 | 惠博, 侯宏艺, 张涛, 等. 圆柱形环状脉动热管烧干特性[J]. 化工进展, 2023, 42(S1): 33-40. |
Bo XI/HUI), HOU Hongyi, ZHANG Tao, et al. Drying characteristics of cylindrical annular pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 33-40. | |
28 | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
SHI Fangzhe, GAN Yunhua. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe[J]. CIESC Journal, 2023, 74(7): 2814-2823. | |
29 | 李思卓. 液氮温区脉动热管流动特性及传热机理研究[D]. 杭州: 浙江大学, 2023. |
LI Sizhuo. Study on flow characteristics and heat transfer mechanism of pulsating heat pipe in liquid nitrogen temperature zone[D]. Hangzhou: Zhejiang University, 2023. | |
30 | YU Dali, LIU Jian, HU Chongju, et al. Key features and highly effective prediction of complete startup from frozen state for high-temperature heat pipe in heat pipe reactor[J]. Applied Thermal Engineering, 2024, 236: 121766. |
31 | 古新, 郑志阳, 罗元坤, 等. 基于正交试验的扭转流换热器壳程结构优化[J]. 化工进展, 2019, 38(4): 1688-1695. |
GU Xin, ZHENG Zhiyang, LUO Yuankun, et al. Optimization on shell side structure of twisty flow heat exchanger based on orthogonal experiment[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1688-1695. | |
32 | 郭宇翔. 高效中温铯热管传热传质特性的实验及数值模拟研究[D]. 北京: 华北电力大学, 2023. |
GUO Yuxiang. Experimental and numerical simulation study on heat and mass transfer characteristics of high efficiency medium temperature cesium heat pipe[D]. Beijing: North China Electric Power University, 2023. |
[1] | QIAN Zhiguang, WANG Shixue, ZHU Yu, YUE Like. Start-up characteristics of high-temperature proton exchange membrane fuel cell stacks based on flat heat pipes [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1754-1763. |
[2] | ZHAO Jilong, GUO Yuxiang, CHEN Hongxia, YUAN Dazhong, DU Xiaoze. Experimental and numerical simulation on heat transfer characteristics of vertical cesium heat pipes [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1711-1719. |
[3] | HU Zhuohuan, DING Xiaoyu, XU Jiayin. Effect of Tesla-valve-structure wicks on the start-up performance of loop heat pipes [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6031-6038. |
[4] | HUI Bo, HOU Hongyi, ZHANG Tao, CHE Shengwen. Drying characteristics of cylindrical annular pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 33-40. |
[5] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[6] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[7] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[8] | WU Weixiong, XIE Shiwei, MA Ruixin, LIU Jizhen, WANG Shuangfeng, RAO Zhonghao. Research progress of solid-liquid/gas-liquid multiphase coupling thermal control technology [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1143-1154. |
[9] | YU Junsheng, ZHU Ye, LI Qiankun, XU Shixuan, ZHANG Xinyang, WANG Cheng, QU Jian. Performance of pulsating heat pipe with rising and declining heat flux [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1178-1186. |
[10] | GAO Tingting, JIANG Zhen, WU Xiaoyi, HAO Tingting, MA Xuehu, WEN Rongfu. Experimental investigation on lithium-ion battery heat dissipation performance of oscillating heat pipe with micro-nano emulsion [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1167-1177. |
[11] | YANG Maofei, LI Jinwang, ZHOU Liuwei. Heat transfer performance of hydrophilic modified ultra-thin flat heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 692-698. |
[12] | WANG Chao, WANG Zongyong, ZHANG Wei, HAN Xu, LIU Lei, FU Qihui. Effect of jet impingement nanofluid on heat transfer characteristics of semicircular spiral channels [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6207-6217. |
[13] | HUANG Longteng, QI Yingxia, WANG Yucheng, JIANG Shengjun. Battery heat dissipation performance based on composite phase change material-heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5680-5688. |
[14] | DENG Quanlong, DING Houcheng, XU Yuandi, JIANG Zhong’an, YANG Lan, SUN Xuefei. Synergistic dust removal performance of surfactant droplets combined with metal mesh grid [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 546-552. |
[15] | ZHENG Suzheng, LI Nanxi, DONG Deping. Experimental and numerical investigation of loop heat pipe with flat ceramic capillary wick [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3510-3518. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |