Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (11): 5680-5688.DOI: 10.16085/j.issn.1000-6613.2023-0032
• Energy processes and technology • Previous Articles Next Articles
HUANG Longteng1(), QI Yingxia1,2(
), WANG Yucheng1, JIANG Shengjun3
Received:
2023-01-08
Revised:
2023-03-07
Online:
2023-12-15
Published:
2023-11-20
Contact:
QI Yingxia
通讯作者:
祁影霞
作者简介:
黄龙腾(1997-),男,硕士研究生,研究方向为新能源汽车热管理。E-mail:1602501538@qq.com。
基金资助:
CLC Number:
HUANG Longteng, QI Yingxia, WANG Yucheng, JIANG Shengjun. Battery heat dissipation performance based on composite phase change material-heat pipe[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5680-5688.
黄龙腾, 祁影霞, 王誉程, 姜盛军. 基于复合相变材料-热管耦合的电池散热性能[J]. 化工进展, 2023, 42(11): 5680-5688.
编号 | PW-PA质量比 | 熔化过程 | 凝固过程 | ||||||
---|---|---|---|---|---|---|---|---|---|
面积/J·g-1 | 起始点/℃ | 峰值/℃ | 终止点/℃ | 面积/J·g-1 | 起始点/℃ | 峰值/℃ | 终止点/℃ | ||
S1 | 100∶0 | 154.1 | 38.7 | 49.1 | 52.7 | -147.4 | 21.6 | 28.6 | 37.1 |
S2 | 0∶100 | 220.9 | 61.4 | 65.8 | 68.0 | -220.8 | 52.2 | 58.9 | 55.0 |
SS1 | 66∶34 | 200.7 | 36.0 | 46.7 | 52.7 | -196.5 | 19.3 | 26.9 | 35.9 |
SS2 | 69∶31 | 198.5 | 35.4 | 44.6 | 52.6 | -200.5 | 23.0 | 28.8 | 35.7 |
SS3 | 72∶28 | 197.5 | 33.5 | 44.4 | 49.6 | -199.6 | 22.9 | 28.3 | 35.6 |
SS4 | 75∶25 | 194.3 | 34.7 | 43.3 | 46.1 | -199.8 | 23.9 | 29.1 | 35.7 |
SS5 | 78∶22 | 191.3 | 38.2 | 44.3 | 47.9 | -193.4 | 23.5 | 29.4 | 36.4 |
SS6 | 81∶19 | 184.5 | 40.2 | 44.8 | 49.4 | -186.5 | 22.0 | 28.9 | 36.2 |
SS7 | 84∶16 | 178.7 | 36.2 | 44.9 | 48.1 | -182.4 | 22.8 | 29.1 | 36.0 |
编号 | PW-PA质量比 | 熔化过程 | 凝固过程 | ||||||
---|---|---|---|---|---|---|---|---|---|
面积/J·g-1 | 起始点/℃ | 峰值/℃ | 终止点/℃ | 面积/J·g-1 | 起始点/℃ | 峰值/℃ | 终止点/℃ | ||
S1 | 100∶0 | 154.1 | 38.7 | 49.1 | 52.7 | -147.4 | 21.6 | 28.6 | 37.1 |
S2 | 0∶100 | 220.9 | 61.4 | 65.8 | 68.0 | -220.8 | 52.2 | 58.9 | 55.0 |
SS1 | 66∶34 | 200.7 | 36.0 | 46.7 | 52.7 | -196.5 | 19.3 | 26.9 | 35.9 |
SS2 | 69∶31 | 198.5 | 35.4 | 44.6 | 52.6 | -200.5 | 23.0 | 28.8 | 35.7 |
SS3 | 72∶28 | 197.5 | 33.5 | 44.4 | 49.6 | -199.6 | 22.9 | 28.3 | 35.6 |
SS4 | 75∶25 | 194.3 | 34.7 | 43.3 | 46.1 | -199.8 | 23.9 | 29.1 | 35.7 |
SS5 | 78∶22 | 191.3 | 38.2 | 44.3 | 47.9 | -193.4 | 23.5 | 29.4 | 36.4 |
SS6 | 81∶19 | 184.5 | 40.2 | 44.8 | 49.4 | -186.5 | 22.0 | 28.9 | 36.2 |
SS7 | 84∶16 | 178.7 | 36.2 | 44.9 | 48.1 | -182.4 | 22.8 | 29.1 | 36.0 |
放电倍率 | 不同环境温度下的温升/℃ | ||
---|---|---|---|
15℃ | 25℃ | 40℃ | |
0.5C | 5.1 | 4.3 | 2.8 |
1C | 9 | 8 | 6.7 |
2C | 23 | 22.5 | 21.8 |
3C | 36 | 38 | 42 |
放电倍率 | 不同环境温度下的温升/℃ | ||
---|---|---|---|
15℃ | 25℃ | 40℃ | |
0.5C | 5.1 | 4.3 | 2.8 |
1C | 9 | 8 | 6.7 |
2C | 23 | 22.5 | 21.8 |
3C | 36 | 38 | 42 |
石蜡-十六酸质量比 | 有效热管理时间 /s | 稳定工作温度范围 /℃ | 最高温度 /℃ |
---|---|---|---|
84∶16 | 340 | 42.8~45.2 | 47.5 |
81∶19 | 385 | 42.2~44.6 | 47.1 |
78∶22 | 410 | 41.8~44.1 | 46.1 |
75∶25 | 400 | 41.9~43.7 | 46.0 |
72∶28 | 395 | 42.1~44.5 | 46.4 |
69∶31 | 396 | 42.3~44.4 | 46.9 |
66∶34 | 391 | 43.2~45.6 | 47.7 |
石蜡-十六酸质量比 | 有效热管理时间 /s | 稳定工作温度范围 /℃ | 最高温度 /℃ |
---|---|---|---|
84∶16 | 340 | 42.8~45.2 | 47.5 |
81∶19 | 385 | 42.2~44.6 | 47.1 |
78∶22 | 410 | 41.8~44.1 | 46.1 |
75∶25 | 400 | 41.9~43.7 | 46.0 |
72∶28 | 395 | 42.1~44.5 | 46.4 |
69∶31 | 396 | 42.3~44.4 | 46.9 |
66∶34 | 391 | 43.2~45.6 | 47.7 |
不确定度来源 | 不确定度 | 除数因子 | 标准误差 |
---|---|---|---|
标准铂电阻 | 5.0 | 1 | 5.0 |
传感器时间漂移 | 2.4 | 1.4 | |
测量过程的温度波动 | 2.0 | 1 | 2.0 |
合成标准不确定度 | 5.56 | ||
扩展不确定度(k=2) | 11.12 |
不确定度来源 | 不确定度 | 除数因子 | 标准误差 |
---|---|---|---|
标准铂电阻 | 5.0 | 1 | 5.0 |
传感器时间漂移 | 2.4 | 1.4 | |
测量过程的温度波动 | 2.0 | 1 | 2.0 |
合成标准不确定度 | 5.56 | ||
扩展不确定度(k=2) | 11.12 |
1 | Yih-Shing DUH, THENG Jia-Huei, CHEN Chia-Chi, et al. Comparative study on thermal runaway of commercial 14500, 18650 and 26650 LiFePO4 batteries used in electric vehicles[J]. Journal of Energy Storage, 2020, 31: 101580. |
2 | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. |
3 | ZHANG Xinghui, LI Zhao, LUO Lingai, et al. A review on thermal management of lithium-ion batteries for electric vehicles[J]. Energy, 2022, 238(A): 11652. |
4 | RAO Zhonghao, WANG Shuangfeng. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554-4571. |
5 | SHARMA D K, PRABHAKAR A. A review on air cooled and air centric hybrid thermal management techniques for Li-ion battery packs in electric vehicles[J]. Journal of Energy Storage, 2021, 41: 102885. |
6 | LI Xiutao, ZHOU Zhenyang, ZHANG Mengjie, et al. A liquid cooling technology based on fluorocarbons for lithium-ion battery thermal safety[J]. Journal of Loss Prevention in the Process Industries, 2022, 78: 104818. |
7 | WAZEER A, DAS A, ABEYKOON C, et al. Phase change materials for battery thermal management of electric and hybrid vehicles: A review[J]. Energy Nexus, 2022, 7: 100131. |
8 | 罗明昀, 凌子夜, 方晓明, 等. 基于相变储热技术的电池热管理系统研究进展[J]. 化工进展, 2022, 41(3): 1594-1607. |
LUO Mingyun, LING Ziye, FANG Xiaoming, et al. Research progress of battery thermal management system based on phase change heat storage technology[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1594-1607. | |
9 | LIU Feifei, LAN Fengchong, CHEN Jiqing, et al. Experimental investigation on cooling/heating characteristics of ultra-thin micro heat pipe for electric vehicle battery thermal management[J]. Chinese Journal of Mechanical Engineering, 2018, 31(3): 179-188. |
10 | ABDELKAREEM M A, MAGHRABIE H M, ABO-KHALIL A G, et al. Thermal management systems based on heat pipes for batteries in EVs/HEVs[J]. Journal of Energy Storage, 2022, 51: 104384. |
11 | YI Feng, Jiaqiang E, ZHANG Bin, et al. Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method[J]. Renewable Energy, 2022, 181: 472-489. |
12 | JANG Dong Soo, YUN Sungho, HONG Seong Ho, et al. Performance characteristics of a novel heat pipe-assisted liquid cooling system for the thermal management of lithium-ion batteries[J]. Energy Conversion and Management, 2022, 251: 115001. |
13 | BEHI H, KARIMI D, BEHI M, et al. A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles[J]. Applied Thermal Engineering, 2020, 174: 115280. |
14 | YE Xin, ZHAO Yaohua, QUAN Zhenhua. Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA)[J]. Applied Thermal Engineering, 2018, 130: 74-82. |
15 | AN Zhiguo, ZHANG Chunjie, GAO Zhengyuan, et al. Heat dissipation performance of hybrid lithium battery thermal management system using bionic nephrolepis micro-channel[J]. Applied Thermal Engineering, 2022, 217: 119127. |
16 | ZHANG Wencan, LIANG Zhicheng, LING Guozhi, et al. Influence of phase change material dosage on the heat dissipation performance of the battery thermal management system[J]. Journal of Energy Storage, 2021, 41: 102849. |
17 | 尹少武, 康鹏, 韩嘉维, 等. 基于相变材料的锂离子电池热管理性能[J]. 化工进展, 2022, 41(10): 5518-5529. |
YIN Shaowu, KANG Peng, HAN Jiawei, et al. Thermal management performance of lithium-ion battery based on phase change materials[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5518-5529. | |
18 | SABBAH R, KIZILEL R, SELMAN J R, et al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources, 2008, 182(2): 630-638. |
19 | 杨晋, 殷勇高. 空调蓄冷用相变材料的研究进展[J]. 制冷学报, 2022, 43(3): 37-44. |
YANG Jin, YIN Yonggao. Research progress of phase change materials for air-conditioning storage[J]. Journal of Refrigeration, 2022, 43(3): 37-44. | |
20 | 卢俊威. 动力电池相变冷却技术与热管耦合传热研究[D]. 长春: 吉林大学, 2014. |
LU Junwei. Research on heat transfer of battery cooling technology with phase change material and heat pipe[D]. Changchun: Jilin University, 2014. | |
21 | RAO Zhonghao, WANG Shuangfeng, WU Maochun, et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion and Management. 2013, 65: 92-97. |
22 | CHOI Sung Ho, Han Seo KO, SOHN Dong Kee. Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage[J]. Energy, 2022, 244: 123168. |
23 | 张寅平, 苏跃红, 葛新石. (准)共晶系相变材料融点及融解热的理论预测[J]. 中国科学技术大学学报, 1995, 25(4): 474-478. |
ZHANG Yinping, SU Yuehong, GE Xinshi. Prediction of the melting temperature and the fusion heat of (quasi-) eutectic PCM[J]. Journal of China University of Science and Technology, 1995, 25(4): 474-478. | |
24 | Joint Committee for Guides in Metrology. Guide to the expression of uncertainty in measurement[R]. 2013: 237-244. |
[1] | HUI Bo, HOU Hongyi, ZHANG Tao, CHE Shengwen. Drying characteristics of cylindrical annular pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 33-40. |
[2] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[3] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[4] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[5] | YU Junsheng, ZHU Ye, LI Qiankun, XU Shixuan, ZHANG Xinyang, WANG Cheng, QU Jian. Performance of pulsating heat pipe with rising and declining heat flux [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1178-1186. |
[6] | GAO Tingting, JIANG Zhen, WU Xiaoyi, HAO Tingting, MA Xuehu, WEN Rongfu. Experimental investigation on lithium-ion battery heat dissipation performance of oscillating heat pipe with micro-nano emulsion [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1167-1177. |
[7] | WU Weixiong, XIE Shiwei, MA Ruixin, LIU Jizhen, WANG Shuangfeng, RAO Zhonghao. Research progress of solid-liquid/gas-liquid multiphase coupling thermal control technology [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1143-1154. |
[8] | ZHAO Xipo, BIAN Wuxun, RAN Baoqing, LIU Jinchao, YIN Shaoding, SUN Yiming. Preparation and properties of paraffin solid-solid phase change materials [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 897-906. |
[9] | YANG Maofei, LI Jinwang, ZHOU Liuwei. Heat transfer performance of hydrophilic modified ultra-thin flat heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 692-698. |
[10] | LI Qi, CHENG Zefang, BAI Miao, HU Pengfei. Melting characteristics of high porosity copper foam reinforced phase change materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4928-4936. |
[11] | YANG Zhe, LIU Fei, ZHANG Tao, DENG Xing, ZHANG Zhengwen. Numerical simulation and experiment of heat storage process of TPMS porous aluminum-paraffin composite phase change material [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4918-4927. |
[12] | ZHENG Suzheng, LI Nanxi, DONG Deping. Experimental and numerical investigation of loop heat pipe with flat ceramic capillary wick [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3510-3518. |
[13] | WANG Enhua, JIN Lili, GAO Shanbin, CHI Kebin, DUAN Aijun. Development of catalyst for n-paraffins hydroisomerization [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2967-2980. |
[14] | HAN Jingjing, TAN Juan, LIU Jing, LIU Yu. Controllable synthesis of small size ZSM-22 zeolites and their performance in the production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1916-1924. |
[15] | YANG Honghai, ZHANG Miao, LIU Liwei, ZHOU Yi, SHEN Junjie, SHI Weigang, YIN Yong. Heat transfer performance enhancement and prediction in GO/water pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1725-1734. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 596
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |