Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 2967-2980.DOI: 10.16085/j.issn.1000-6613.2021-1406
• Industrial catalysis • Previous Articles Next Articles
WANG Enhua1(), JIN Lili2, GAO Shanbin3, CHI Kebin3, DUAN Aijun1()
Received:
2021-07-05
Revised:
2021-10-10
Online:
2022-06-21
Published:
2022-06-10
Contact:
DUAN Aijun
王恩华1(), 靳丽丽2, 高善彬3, 迟克彬3, 段爱军1()
通讯作者:
段爱军
作者简介:
王恩华(1996—),女,博士研究生,研究方向油品加氢精制催化剂研制。E-mail:基金资助:
CLC Number:
WANG Enhua, JIN Lili, GAO Shanbin, CHI Kebin, DUAN Aijun. Development of catalyst for n-paraffins hydroisomerization[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2967-2980.
王恩华, 靳丽丽, 高善彬, 迟克彬, 段爱军. 正构烷烃临氢异构化催化剂研究进展[J]. 化工进展, 2022, 41(6): 2967-2980.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1406
双功能催化剂 | 制备方法 | 反应条件 | 反应性能 | 文献 |
---|---|---|---|---|
Pd@beta、Pd@MOR Pd/beta、Pd/MOR | 包埋法 浸渍法 | 反应温度200~250℃,压力4MPa,n(H2)/n(正庚烷)=6.64,WHSV=2h-1 | 包埋法制得Pd@beta和Pd@MOR催化剂表现出更高的异构化选择性,Pd@beta上i-C7产率达50%以上,而Pd/beta,i-C7产率为46%;Pd@MOR上i-C7产率40%左右,Pd/MOR上i-C7产率仅为28% | [ |
Pd-Pt/H-beta | 水溶液喷雾浸渍 | 反应温度185~230℃,大气压, p(H2)=1~50bar,LHSV=0~5h-1,n(H2)/n(hydrocarbons)=750∶1 | 温度升高转化率逐渐升高,高达90%;在200℃、1bar、LHSV=3h-1下,不同Pd/Pt比转化率不同;p(H2)从1bar增加到50bar,获得类似转化率反应温度需提高20℃;220℃、1bar下LHSV增加,i-C16产率先增加后降低,最高约70% | [ |
Pt/H-beta、Ni/H-betaNi-Pt/H-beta | 干法浸渍 分步浸渍 | 反应温度260~300℃,压力10~30bar,n(H2)/n(原料)=15,WHSV=4~10h-1 | 相同条件下,Ni-Pt催化剂中Pt的引入增强异构化选择性,对于Ni-Pt/H-beta,温度升高,转化率24.1%增至92.1%,选择性降低81.3%至33.9%;WHSV升高,转化率从53.7%降至24.1%;压力升高时转化率和选择性均略有升高 | [ |
Pd/SAPO-31 Ni2P/SAPO-31 Pd-Ni2P/SAPO-31 | 浸渍法 浸渍-程序升温还原法 | 反应温度280~400℃,压力2MPa,WHSV=3.7h-1,V(H2)/V(C16)=500 | 0.05Pd/S31催化剂表现出最低的n-C16转化率(60%)和i-C16产率(40%);而4Ni2P/SAPO-31的n-C16转化率和i-C16产率相对较高;对于0.05Pd-4Ni2P/SAPO-31具有最高的n-C16转化率(约85%)和i-C16产率(约70%) | [ |
Ni-Mo/SAPO-11 Ni/SAPO-11 Mo/SAPO-11 | 真空辅助浸渍法 | 反应温度270~340℃,压力2MPa,WHSV=3.1h-1,V(H2)/V(C16)=650 | 与Ni/SAPO-11相比,3.0Ni-0.5Mo/SAPO-11催化剂裂解产物产率低,在转化率93.0%时裂解产物产率为11.6%,且对异构体选择性可达81%。在315℃反应100h时,3.0Ni-0.5Mo/SAPO-11催化剂对正十六烷异构化转化率和选择性分别约为92%和86%,稳定性好 | [ |
MoP/Hbeta | 低温自燃法 浸渍法 | 反应温度280~360℃,常压,n(H2)/n(正庚烷)=4~16,WHSV=1.2h-1 | 浸渍法制备30%MoP/Hbeta-Im正庚烷转化率26.9%,异构化选择性85.3%;而自燃法制备MoP/Hbeta-c催化剂表现出较高活性51%和较低异构化选择性68.8%。H2/正庚烷增加,n-C7转化率降低,i-C7选择性增加;反应温度升高,催化活性迅速增强,反应温度超过320℃,i-C7选择性下降,裂解选择性上升 | [ |
Ni-Ce/SAPO-11 | 浸渍法 | 反应温度300℃,常压,n(H2)/n(n-C7H16)=12,WHSV=3.52h-1 | 2%Ce的催化剂活性最高,转化率为28.8%,选择性为82.7%;随反应时间延长,n-C7转化率略有下降,i-C7选择性略有上升,稳定性好 | [ |
双功能催化剂 | 制备方法 | 反应条件 | 反应性能 | 文献 |
---|---|---|---|---|
Pd@beta、Pd@MOR Pd/beta、Pd/MOR | 包埋法 浸渍法 | 反应温度200~250℃,压力4MPa,n(H2)/n(正庚烷)=6.64,WHSV=2h-1 | 包埋法制得Pd@beta和Pd@MOR催化剂表现出更高的异构化选择性,Pd@beta上i-C7产率达50%以上,而Pd/beta,i-C7产率为46%;Pd@MOR上i-C7产率40%左右,Pd/MOR上i-C7产率仅为28% | [ |
Pd-Pt/H-beta | 水溶液喷雾浸渍 | 反应温度185~230℃,大气压, p(H2)=1~50bar,LHSV=0~5h-1,n(H2)/n(hydrocarbons)=750∶1 | 温度升高转化率逐渐升高,高达90%;在200℃、1bar、LHSV=3h-1下,不同Pd/Pt比转化率不同;p(H2)从1bar增加到50bar,获得类似转化率反应温度需提高20℃;220℃、1bar下LHSV增加,i-C16产率先增加后降低,最高约70% | [ |
Pt/H-beta、Ni/H-betaNi-Pt/H-beta | 干法浸渍 分步浸渍 | 反应温度260~300℃,压力10~30bar,n(H2)/n(原料)=15,WHSV=4~10h-1 | 相同条件下,Ni-Pt催化剂中Pt的引入增强异构化选择性,对于Ni-Pt/H-beta,温度升高,转化率24.1%增至92.1%,选择性降低81.3%至33.9%;WHSV升高,转化率从53.7%降至24.1%;压力升高时转化率和选择性均略有升高 | [ |
Pd/SAPO-31 Ni2P/SAPO-31 Pd-Ni2P/SAPO-31 | 浸渍法 浸渍-程序升温还原法 | 反应温度280~400℃,压力2MPa,WHSV=3.7h-1,V(H2)/V(C16)=500 | 0.05Pd/S31催化剂表现出最低的n-C16转化率(60%)和i-C16产率(40%);而4Ni2P/SAPO-31的n-C16转化率和i-C16产率相对较高;对于0.05Pd-4Ni2P/SAPO-31具有最高的n-C16转化率(约85%)和i-C16产率(约70%) | [ |
Ni-Mo/SAPO-11 Ni/SAPO-11 Mo/SAPO-11 | 真空辅助浸渍法 | 反应温度270~340℃,压力2MPa,WHSV=3.1h-1,V(H2)/V(C16)=650 | 与Ni/SAPO-11相比,3.0Ni-0.5Mo/SAPO-11催化剂裂解产物产率低,在转化率93.0%时裂解产物产率为11.6%,且对异构体选择性可达81%。在315℃反应100h时,3.0Ni-0.5Mo/SAPO-11催化剂对正十六烷异构化转化率和选择性分别约为92%和86%,稳定性好 | [ |
MoP/Hbeta | 低温自燃法 浸渍法 | 反应温度280~360℃,常压,n(H2)/n(正庚烷)=4~16,WHSV=1.2h-1 | 浸渍法制备30%MoP/Hbeta-Im正庚烷转化率26.9%,异构化选择性85.3%;而自燃法制备MoP/Hbeta-c催化剂表现出较高活性51%和较低异构化选择性68.8%。H2/正庚烷增加,n-C7转化率降低,i-C7选择性增加;反应温度升高,催化活性迅速增强,反应温度超过320℃,i-C7选择性下降,裂解选择性上升 | [ |
Ni-Ce/SAPO-11 | 浸渍法 | 反应温度300℃,常压,n(H2)/n(n-C7H16)=12,WHSV=3.52h-1 | 2%Ce的催化剂活性最高,转化率为28.8%,选择性为82.7%;随反应时间延长,n-C7转化率略有下降,i-C7选择性略有上升,稳定性好 | [ |
催化剂 | 开发公司 | 型号 | 反应条件 | 辛烷值(单程 转化产品) |
---|---|---|---|---|
低温型异构化催化剂[ | UOP | I-8 | 130~170℃、1.7~1.8MPa、0.8~1.0h-1、氢油摩尔比1~2 | 84.5 |
I-82、I-84、I-122 | 120~180℃、3.0~4.0MPa、1.5h-1、氢油摩尔比0.3~0.5 | 83~86 | ||
Axens | IS614A | 120~180℃、2.0MPa、2.0h-1、氢油摩尔比<1 | 83 | |
ATIS-2L | 110~170℃、2.0MPa、2.0h-1、氢油摩尔比<1 | 84~85 | ||
华东理工大学与金陵石化分公司 | Pt-Cl/Al2O3 | 140℃、2.0MPa、1.0h-1、氢油摩尔比1~2 | 80.2 | |
中温型异构化催化剂[ | UOP | I-7 0.3Pt/HM | 260~280℃、1.5~3MPa、2h-1、氢油摩尔比4 | 78~80 |
Axens | IP-632 | 250~270℃、1.5~3MPa、1~2h-1、氢油摩尔比3~4 | 80 | |
RIPP | FI-15 Pt/HM | 250~270℃、1.6MPa、1.7h-1、氢油摩尔比2.6 | 81 | |
华东理工大学与金陵石化分公司 | CI-50 Pd/HM | 260℃、2MPa、2h-1、氢油摩尔比2.7 | 80.9 |
催化剂 | 开发公司 | 型号 | 反应条件 | 辛烷值(单程 转化产品) |
---|---|---|---|---|
低温型异构化催化剂[ | UOP | I-8 | 130~170℃、1.7~1.8MPa、0.8~1.0h-1、氢油摩尔比1~2 | 84.5 |
I-82、I-84、I-122 | 120~180℃、3.0~4.0MPa、1.5h-1、氢油摩尔比0.3~0.5 | 83~86 | ||
Axens | IS614A | 120~180℃、2.0MPa、2.0h-1、氢油摩尔比<1 | 83 | |
ATIS-2L | 110~170℃、2.0MPa、2.0h-1、氢油摩尔比<1 | 84~85 | ||
华东理工大学与金陵石化分公司 | Pt-Cl/Al2O3 | 140℃、2.0MPa、1.0h-1、氢油摩尔比1~2 | 80.2 | |
中温型异构化催化剂[ | UOP | I-7 0.3Pt/HM | 260~280℃、1.5~3MPa、2h-1、氢油摩尔比4 | 78~80 |
Axens | IP-632 | 250~270℃、1.5~3MPa、1~2h-1、氢油摩尔比3~4 | 80 | |
RIPP | FI-15 Pt/HM | 250~270℃、1.6MPa、1.7h-1、氢油摩尔比2.6 | 81 | |
华东理工大学与金陵石化分公司 | CI-50 Pd/HM | 260℃、2MPa、2h-1、氢油摩尔比2.7 | 80.9 |
沸石 | 孔道尺寸/? | 拓扑结构 | 酸性质 | 文献 |
---|---|---|---|---|
丝光沸石 | 6.5×7.0 | MOR(十二元环) | 丰富的酸中心、比较温和的酸强度 | [ |
beta | 6.6×6.7 | BEA(十二元环) | 较强的酸性 | [ |
ZSM-5 | 5.5×5.1 | MFI(十元环) | 强酸量大,L酸与B酸比值高 | [ |
ZSM-22 | 5.7×4.6 | TON(十元环) | 中等强度的表面酸性 | [ |
ZSM-23 | 5.2×4.5 | MTT(十元环) | 表面酸性较强 | [ |
SAPO-11 | 3.9×6.3 | AEL(十元环) | 适中的中强酸 | [12,27,19,29] |
SAPO-31 | 5.4×5.4 | ATO(十二元环) | 温和的酸强度和酸量 | [ |
沸石 | 孔道尺寸/? | 拓扑结构 | 酸性质 | 文献 |
---|---|---|---|---|
丝光沸石 | 6.5×7.0 | MOR(十二元环) | 丰富的酸中心、比较温和的酸强度 | [ |
beta | 6.6×6.7 | BEA(十二元环) | 较强的酸性 | [ |
ZSM-5 | 5.5×5.1 | MFI(十元环) | 强酸量大,L酸与B酸比值高 | [ |
ZSM-22 | 5.7×4.6 | TON(十元环) | 中等强度的表面酸性 | [ |
ZSM-23 | 5.2×4.5 | MTT(十元环) | 表面酸性较强 | [ |
SAPO-11 | 3.9×6.3 | AEL(十元环) | 适中的中强酸 | [12,27,19,29] |
SAPO-31 | 5.4×5.4 | ATO(十二元环) | 温和的酸强度和酸量 | [ |
nPt/nA | >0.17 | 0.03<nPt/nA<0.17 | <0.03 |
---|---|---|---|
活性 | 高 | 高 | 低 |
稳定性 | 高 | 一般 | 低 |
反应路径 | n-C10 | n-C10 |
nPt/nA | >0.17 | 0.03<nPt/nA<0.17 | <0.03 |
---|---|---|---|
活性 | 高 | 高 | 低 |
稳定性 | 高 | 一般 | 低 |
反应路径 | n-C10 | n-C10 |
67 | ALVAREZ F, RIBEIRO F R, PEROT G, et al. Hydroisomerization and hydrocracking of alkanes (Ⅶ): influence of the balance between acid and hydrogenating functions on the transformation of n-decane on PtHY catalysts[J]. Journal of Catalysis, 1996, 162(2): 179-189. |
68 | GUISNET M. “Ideal” bifunctional catalysis over Pt-acid zeolites[J]. Catalysis Today, 2013, 218/219: 123-134. |
69 | HENGSAWAD T, SRIMINGKWANCHAI C, BUTNARK S, et al. Effect of metal-acid balance on hydroprocessed renewable jet fuel synthesis from hydrocracking and hydroisomerization of biohydrogenated diesel over Pt-supported catalysts[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1429-1440. |
70 | WEI X M, KIKHTYANIN O V, PARMON V N, et al. Synergetic effect between the metal and acid sites of Pd/SAPO-41 bifunctional catalysts in n-hexadecane hydroisomerization[J]. Journal of Porous Materials, 2018, 25(1): 235-247. |
71 | CHENG K, VAN DER WAL L I, YOSHIDA H, et al. Impact of the spatial organization of bifunctional metal-zeolite catalysts on the hydroisomerization of light alkanes[J]. Angewandte Chemie International Edition, 2020, 132(9): 3620-3628. |
72 | WEISZ P B. Polyfunctional heterogeneous catalysis[J]. Advances in Catalysis, 1962, 13: 137-190. |
73 | ZEČEVIĆ J, VANBUTSELE G, DE JONG K P, et al. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature, 2015, 528(7581): 245-248. |
74 | SAMAD J E, BLANCHARD J, SAYAG C, et al. The controlled synthesis of metal-acid bifunctional catalysts: the effect of metal: acid ratio and metal-acid proximity in Pt silica-alumina catalysts for n-heptane isomerization[J]. Journal of Catalysis, 2016, 342: 203-212. |
75 | MOUSSA O B, TINAT L, JIN X J, et al. Heteroaggregation and selective deposition for the fine design of nanoarchitectured bifunctional catalysts: application to hydroisomerization[J]. ACS Catalysis, 2018, 8(7): 6071-6078. |
1 | 李大东, 聂红, 孙丽丽. 加氢处理工艺与工程[M]. 2版. 北京: 中国石化出版社, 2016: 478-494. |
LI Dadong, NIE Hong, SUN Lili. Hydroprocessing technology and engineering[M]. 2nd ed. Beijing: China Petrochemical Press, 2016: 478-494. | |
2 | ZHANG M, CHEN Y J, WANG L, et al. Shape selectivity in hydroisomerization of hexadecane over Pt supported on 10-ring zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6069-6078. |
3 | 王孟艳, 韩磊, 黄传峰, 等. 轻质烷烃异构化催化剂研究进展[J]. 工业催化, 2016, 24(5): 19-24. |
76 | WEISZ P B, SWEGLER E W. Stepwise reaction on separate catalytic centers: isomerization of saturated hydrocarbons[J]. Science, 1957, 126(3262): 31-32. |
77 | BATALHA N, ASTAFAN A, REIS J C DOS, et al. Hydroisomerization of n-hexadecane over bifunctional Pt-HBEA catalysts. Influence of Si/Al ratio on activity selectivity[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(2): 661-673. |
3 | WANG Mengyan, HAN Lei, HUANG Chuanfeng, et al. Development in the catalysts for light paraffin isomerization[J]. Industrial Catalysis, 2016, 24(5): 19-24. |
4 | 宋烨, 林伟, 龙军, 等. 不同改性ZSM-5分子筛负载Ni催化剂的正辛烷芳构化和异构化催化性能[J]. 石油学报(石油加工), 2016, 32(4): 659-665. |
SONG Ye, LIN Wei, LONG Jun, et al. Catalytic aromatization and isomerization performance of differently modified ZSM-5 zeolite-supported Ni catalysts for n-octane[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(4): 659-665. | |
5 | ZHAO X L, LIU W, WANG J Q, et al. Interface mediated crystallization of plate-like SAPO-41 crystals to promote catalytic hydroisomerization[J]. Applied Catalysis A: General, 2020, 602: 117738-117751. |
6 | CHEN H M, YI F J, MA C P, et al. Hydroisomerization of n-heptane on a new kind of bifunctional catalysts with palladium nanoparticles encapsulating inside zeolites[J]. Fuel, 2020, 268: 117241-117253. |
7 | BAUER F, FICHT K, BERTMER M, et al. Hydroisomerization of long-chain paraffins over nano-sized bimetallic Pt-Pd/H-beta catalysts[J]. Catalysis Science & Technology, 2014, 4(11): 4045-4054. |
8 | KARAKOULIA S A, HERACLEOUS E, LAPPAS A A. Mild hydroisomerization of heavy naphtha on mono- and bi-metallic Pt and Ni catalysts supported on beta zeolite[J]. Catalysis Today, 2020, 355: 746-756. |
9 | WANG W, LIU C J, WU W. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure[J]. Catalysis Science & Technology, 2019, 9(16): 4162-4187. |
10 | WANG D X, KANG X, GU Y, et al. Electronic tuning of Ni by Mo species for highly efficient hydroisomerization of n-alkanes comparable to Pt-based catalysts[J]. ACS Catalysis, 2020, 10(18): 10449-10458. |
11 | LIU P, CHANG W T, WANG J, et al. MoP/Hβ catalyst prepared by low-temperature auto-combustion for hydroisomerization of n-heptane[J]. Catalysis Communications, 2015, 66: 79-82. |
12 | 所艳华, 李秀敏, 陈刚, 等. Ce促进Ni/SAPO-11催化剂上正庚烷的临氢异构化[J]. 高等学校化学学报, 2014, 35(6): 1252-1257. |
SUO Yanhua, LI Xiumin, CHEN Gang, et al. Ni/SAPO-11 promoted by rare earth element Ce for hydroisomerization of n-heptane[J]. Chemical Journal of Chinese Universities, 2014, 35(6): 1252-1257. | |
13 | CLAUDE M C, MARTENS J A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48. |
14 | 王新苗, 杨晓东, 孙发民, 等. Pt/SAPO-11和Pt/SAPO-31催化剂对长链烷烃的加氢异构性能[J]. 石油学报(石油加工), 2017, 33(4): 717-723. |
WANG Xinmiao, YANG Xiaodong, SUN Famin, et al. Hydroisomerization of long-chain alkanes over Pt/SAPO-11 and Pt/SAPO-31 catalysts[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(4): 717-723. | |
15 | 吴伟, 王瑜, 张瑞, 等. Pd/ZSM-22分子筛双功能催化剂的制备及其加氢异构化反应性能[J]. 黑龙江大学自然科学学报, 2011, 28(4): 532-537. |
WU Wei, WANG Yu, ZHANG Rui, et al. Preparation of Pd/ZSM-22 bifunctional catalysts and its performance in the hydroisomerization of n-decane[J]. Journal of Natural Science of Heilongjiang University, 2011, 28(4): 532-537. | |
16 | GENG L L, GONG J J, QIAO G L, et al. Effect of metal precursors on the performance of Pt/SAPO-11 catalysts for n-dodecane hydroisomerization[J]. ACS Omega, 2019, 4(7): 12598-12605. |
17 | GE L X, YU G, CHEN X Q, et al. Effects of particle size on bifunctional Pt/SAPO-11 catalysts in the hydroisomerization of n-dodecane[J]. New Journal of Chemistry, 2020, 44(7): 2996-3003. |
18 | CHEN H M, LIU S Y, YIN J Q, et al. The influence of size and shape of Pd nanoparticles on the performances of Pd/beta catalysts for n-heptane hydroisomerization[J]. ChemCatChem, 2019, 11(15): 3542-3551. |
19 | GENG C H, ZHANG F, GAO Z X, et al. Hydroisomerization of n-tetradecane over Pt/SAPO-11 catalyst[J]. Catalysis Today, 2004, 93/94/95: 485-491. |
20 | PARÍS R S, L’ABBATE M E, LIOTTA L F, et al. Hydroconversion of paraffinic wax over platinum and palladium catalysts supported on silica-alumina[J]. Catalysis Today, 2016, 275: 141-148. |
21 | 李金楼, 赵文博, 傅雯倩. 介孔ZSM-22沸石负载Pt对十二烷加氢异构化性能的影响[J]. 现代化工, 2019, 39(2): 74-78. |
LI Jinlou, ZHAO Wenbo, FU Wenqian. Influences of mesoporous ZSM-22 zeolite supported Pt catalyst on hydroisomerization of n-dodecane[J]. Modern Chemical Industry, 2019, 39(2): 74-78. | |
22 | WANG W, LIU C J, WU W. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure[J]. Catalysis Science & Technology, 2019, 9(16): 4162-4187. |
23 | ROLDÁN R, BEALE A M, SÁNCHEZ-SÁNCHEZ M, et al. Effect of the impregnation order on the nature of metal particles of bi-functional Pt/Pd-supported zeolite beta materials and on their catalytic activity for the hydroisomerization of alkanes[J]. Journal of Catalysis, 2008, 254(1): 12-26. |
24 | JIA G Z, GUO C M, WANG W, et al. The synergic effects of highly selective bimetallic Pt-Pd/SAPO-41 catalysts for the n-hexadecane hydroisomerization[J]. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1111-1124. |
25 | KIM J, HAN S W, KIM J C, et al. Supporting nickel to replace platinum on zeolite nanosponges for catalytic hydroisomerization of n-dodecane[J]. ACS Catalysis, 2018, 8(11): 10545-10554. |
26 | LIU P, WU M Y, WANG J, et al. Hydroisomerization of n-heptane over MoP/Hβ catalyst doped with metal additive[J]. Fuel Processing Technology, 2015, 131: 311-316. |
27 | YANG Z C, LIU Y Q, LI Y P, et al. Effect of preparation method on the bimetallic NiCu/SAPO-11 catalysts for the hydroisomerization of n-octane[J]. Journal of Energy Chemistry, 2019, 28: 23-30. |
28 | TIAN S S, CHEN J X. Hydroisomerization of n-dodecane on a new kind of bifunctional catalyst: nickel phosphide supported on SAPO-11 molecular sieve[J]. Fuel Processing Technology, 2014, 122: 120-128. |
29 | LIU Y X, LIU X M, ZHAO L M, et al. Effect of lanthanum species on the physicochemical properties of La/SAPO-11 molecular sieve[J]. Journal of Catalysis, 2017, 347: 170-184. |
30 | DECOLATTI H P, GIORIA E G, IBARLÍN S N, et al. Exchanged lanthanum in InHMOR and its impact on the catalytic performance of InHMOR. Spectroscopic, volumetric and microscopic studies[J]. Microporous and Mesoporous Materials, 2016, 222: 9-22. |
31 | SONG H, WANG N, SONG H L, et al. La-Ni modified S2O8 2-/ZrO2-Al2O3 catalyst in n-pentane hydroisomerization[J]. Catalysis Communications, 2015, 59: 61-64. |
32 | TAN Y C, HU W J, DU Y Y, et al. Species and impacts of metal sites over bifunctional catalyst on long chain n-alkane hydroisomerization: a review[J]. Applied Catalysis A: General, 2021, 611: 117916-117935. |
33 | SHAO Y F, WANG L Z, ZHANG J L, et al. Synthesis of hydrothermally stable and long-range ordered Ce-MCM-48 and Fe-MCM-48 materials[J]. The Journal of Physical Chemistry B, 2005, 109(44): 20835-20841. |
34 | 张孔远, 崔程鑫, 赵兴涛, 等. 稀土Ce改性Pt/Hβ-HZSM-5异构化催化剂的性能[J]. 石油化工, 2017, 46(5): 524-529. |
ZHANG Kongyuan, CUI Chengxin, ZHAO Xingtao, et al. Properties of Ce modified Pt/Hβ-HZSM-5 catalysts for the isomerization of n-hexane[J]. Petrochemical Technology, 2017, 46(5): 524-529. | |
35 | TAYLOR R J, PETTY R H. Selective hydroisomerization of long chain normal paraffins[J]. Applied Catalysis A: General, 1994, 119(1): 121-138. |
36 | 徐铁钢, 吴显军, 王刚, 等. 轻质烷烃异构化催化剂研究进展[J]. 化工进展, 2015, 34(2): 397-401. |
XU Tiegang, WU Xianjun, WANG Gang, et al. Light paraffin isomerization catalyst and its development[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 397-401. | |
37 | 张秋平, 濮仲英, 于春年, 等. RISO型C5/C6烷烃异构化催化剂的工业生产及应用[J]. 石油炼制与化工, 2005, 36(8): 1-4. |
ZHANG Qiuping, PU Zhongying, YU Chunnian, et al. Production and application of RISO C5/C6 alkanes isomerization catalyst[J]. Petroleum Processing and Petrochemicals, 2005, 36(8): 1-4. | |
38 | 王瑞英, 李斌, 黄国雄, 等. C5/C6烷烃异构化催化剂的千吨级装置使用试验[J]. 石油炼制与化工, 1991, 22(12): 15-18. |
WANG Ruiying, LI Bin, HUANG Guoxiong, et al. Test of C5/C6 isomerization catalyst on a 1000t/a isomerization unit[J]. Petroleum Processing and Petrochemicals, 1991, 22(12): 15-18. | |
39 | 马宇翔, 孙娜, 王钰佳, 等. 导向剂法制备纳米棒状丝光沸石分子筛及其加氢异构化性能[J]. 人工晶体学报, 2018, 47(7): 1382-1387. |
MA Yuxiang, SUN Na, WANG Yujia, et al. Synthesis of nano rod-shaped mordenite sieve by guide agent method and its hydrogen isomerization performance[J]. Journal of Synthetic Crystals, 2018, 47(7): 1382-1387. | |
40 | 郑仁垟. 金属-分子筛双功能催化剂的结构设计及其烷烃异构研究进展[J]. 化工进展, 2021, 40(7): 3785-3790. |
ZHENG Renyang. Advances in structure design and alkane isomerization performance of metal-zeolite bifunctional catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3785-3790. | |
41 | BAI X F, WEI X M, LIU Y, et al. Hydroisomerization of n-hexadecane over Hβ molecular sieve loading palladium bifunctional catalyst: effect of SiO2/Al2O3 molar ratios[J]. IOP Conference Series: Materials Science and Engineering, 2019, 504: 012042-012050. |
42 | WANG X Y, ZHANG X W, WANG Q F. n-Dodecane hydroisomerization over Pt/ZSM-22: controllable microporous Brönsted acidity distribution and shape-selectivity[J]. Applied Catalysis A: General, 2020, 590: 117335-117345. |
43 | CHAI Z B, LÜ E J, ZHANG H K, et al. Effect of ethanol on the isomerization of n-heptane over Pt/SAPO-11 and Pt/ZSM-22 catalysts[J]. Journal of Fuel Chemistry and Technology, 2014, 42(2): 207-211. |
44 | GAO S B, ZHAO Z, LU X F, et al. Hydrocracking diversity in n-dodecane isomerization on Pt/ZSM-22 and Pt/ZSM-23 catalysts and their catalytic performance for hydrodewaxing of lube base oil[J]. Petroleum Science, 2020, 17(6): 1752-1763. |
45 | CHEN Y J, LI C, CHEN X, et al. Synthesis of ZSM-23 zeolite with dual structure directing agents for hydroisomerization of n-hexadecane[J]. Microporous and Mesoporous Materials, 2018, 268: 216-224. |
46 | CHEN Y J, LI C, CHEN X, et al. Synthesis and characterization of iron-substituted ZSM-23 zeolite catalysts with highly selective hydroisomerization of n-hexadecane[J]. Industrial & Engineering Chemistry Research, 2018, 57(41): 13721-13730. |
47 | 吴会敏, 肖林飞, 白雪峰, 等. 硅源和铝源种类对SAPO-31分子筛物化性质及其催化正癸烷加氢异构化反应性能的影响[J]. 石油学报(石油加工), 2014, 30(2): 328-335. |
WU Huimin, XIAO Linfei, BAI Xuefeng, et al. The influence of silicon and aluminum species on physicochemical properties and catalytic performance of SAPO-31 molecular sieve[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(2): 328-335. | |
48 | 朱淑英, 秦波, 王丁, 等. Y沸石对加氢异构催化剂性能的影响[J]. 应用化工, 2020, 49(1): 34-38. |
ZHU Shuying, QIN Bo, WANG Ding, et al. Effects of Y zeolites on catalysts for hydroisomerization[J]. Applied Chemical Industry, 2020, 49(1): 34-38. | |
49 | 王军, 林臻, 张玉辉, 等. Pt/脱铝Y沸石催化剂上正庚烷加氢异构化[J]. 石油化工, 2001, 30(7): 509-512. |
WANG Jun, LIN Zhen, ZHANG Yuhui, et al. Hydroisomerization of n-heptane over platinum catalysts supported on dealuminated Y zeolites[J]. Petrochemical Technology, 2001, 30(7): 509-512. | |
50 | ROLDÁN R, ROMERO F J, JIMÉNEZ-SANCHIDRIÁN C, et al. Influence of acidity and pore geometry on the product distribution in the hydroisomerization of light paraffins on zeolites[J]. Applied Catalysis A: General, 2005, 288(1/2): 104-115. |
51 | 靳丽丽, 马宝利, 董春明, 等. 镍负载AlMCM-41催化剂上正辛烷的加氢异构化研究[J]. 应用科技, 2014, 41(4): 69-72. |
JIN Lili, MA Baoli, DONG Chunming, et al. Reserch of Nickel loading on AlMCM-41 catalyst for hydroisomerization of octane[J]. Applied Science and Technology, 2014, 41(4): 69-72. | |
52 | 范吉元. 介微孔复合材料的合成及其加氢改质性能研究[D]. 北京: 中国石油大学(北京), 2019. |
FAN Jiyuan. Synthesis of micro/mesoporous materials and their catalytic performances for hydro-upgrading[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
53 | JAROSZEWSKA K, FEDYNA M, TRAWCZYŃSKI J. Hydroisomerization of long-chain n-alkanes over Pt/AlSBA-15+zeolite bimodal catalysts[J]. Applied Catalysis B: Environmental, 2019, 255: 117756-117767. |
54 | SAKMECHE M, BELHAKEM A, GHOMARI S A, et al. Hydroconversion of n-C10 alkanes using functionalized AlMCM-41 as catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129(2): 975-990. |
55 | 徐铁钢, 吴显军, 王刚, 等. 轻质烷烃异构化催化剂研究进展[J]. 化工进展, 2015, 34(2): 397-401. |
XU Tiegang, WU Xianjun, WANG Gang, et al. Light paraffin isomerizadon catalyst and its development[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 397-401. | |
56 | 高志国. Ni-S2O 8 2 - /ZrO2-Al2O3固体超强酸催化剂的制备及其异构化性能研究[D]. 大庆: 东北石油大学, 2015. |
GAO Zhiguo. Ni-S2O 8 2 - /ZrO2-Al2O3 solid superacid catalysts preparation and isomerization performance study[D]. Daqing: Northeast Petroleum University, 2015. | |
57 | BAILEY G C, HOLM V. Sulfate-treated zirconia-gel catalyst: US3032599A[P]. 1962-05-01. |
58 | HINO M, KOBAYASHI S, ARATA K. Solid catalyst treated with anion (Ⅱ): Reactions of butane and isobutane catalyzed by zirconium oxide treated with sulfate ion. Solid superacid catalyst[J]. Journal of the American Chemical Society, 1979, 101(21): 6439-6441. |
59 | 张孔远, 张朋伟, 杨光, 等. Pt-SO4 2-/ZrO2-Al2O3固体超强酸催化剂的研究[J]. 石油炼制与化工, 2020, 51(12): 33-40. |
ZHANG Kongyuan, ZHANG Pengwei, YANG Guang, et al. Study on Pt-SO4 2-/ZrO2-Al2O3 solid superacid catalyst[J]. Petroleum Processing and Petrochemicals, 2020, 51(12): 33-40. | |
60 | 杨万丽. 杂多酸无机-有机杂化材料[M]. 北京: 化学工业出版社, 2016. |
YANG Wanli. Heteropolyacid inorganic-organic hybrid materials[M]. Beijing: Chemical Industry Press, 2016. | |
61 | NA K, OKUHARA T, MISONO M. Skeletal isomerization of n-butane over caesium hydrogen salts of 12-tungstophosphoric acid[J]. Journal of the Chemical Society, Faraday Transactions, 1995, 91(2): 367-374. |
62 | ASTAFAN A, POUILLOUX Y, PATARIN J, et al. Impact of extreme downsizing of *BEA-type zeolite crystals on n-hexadecane hydroisomerization[J]. New Journal of Chemistry, 2016, 40(5): 4335-4343. |
63 | LUCAS A D, SÁNCHEZ P, DORADO F, et al. Effect of the metal loading in the hydroisomerization of n-octane over beta agglomerated zeolite based catalysts[J]. Applied Catalysis A: General, 2005, 294(2): 215-225. |
64 | LÜ Y C, YU Z M, YANG Y, et al. Metal-acid balance in the in situ solid synthesized Ni/SAPO-11 catalyst for n-hexane hydroisomerization[J]. Fuel, 2019, 243: 398-405. |
65 | GUISNET M, ALVAREZ F, GIANNETTO G, et al. Hydroisomerization and hydrocracking of n-heptane on Pth zeolites. Effect of the porosity and of the distribution of metallic and acid sites[J]. Catalysis Today, 1987, 1(4): 415-433. |
66 | GIANNETTO G E, PEROT G R, GULSNET M R. Hydroisomerization and hydrocracking of n-alkanes (I): ideal hydroisomerization PtHY catalysts[J]. Industrial & Engineering Chemistry Product Research and Development, 1986, 25(3): 481-490. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[5] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[8] | QI Zhicheng, MA Runmei, LI Shuangxi, LIU Lijing, YAN Xinxin. Sealing performance and deformation failure analysis of high pressure flange metal O-ring with open holes [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 166-174. |
[9] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[10] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[11] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[12] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[15] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |