Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4918-4927.DOI: 10.16085/j.issn.1000-6613.2021-2430

• Materials science and technology • Previous Articles     Next Articles

Numerical simulation and experiment of heat storage process of TPMS porous aluminum-paraffin composite phase change material

YANG Zhe1,2(), LIU Fei3, ZHANG Tao1,2, DENG Xing4, ZHANG Zhengwen1,2()   

  1. 1.College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
    2.Chongqing Key Laboratory of Metal Additive Manufacturing (3D Printing), Chongqing 400044, China
    3.Advanced Manufacturing Engineering School of Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    4.The First Institute of Nuclear Power Institute of China, Chengdu 610213, Sichuan, China
  • Received:2021-11-26 Revised:2022-03-10 Online:2022-09-27 Published:2022-09-25
  • Contact: ZHANG Zhengwen

TPMS多孔铝-石蜡复合相变材料蓄热过程数值模拟及实验

杨喆1,2(), 刘飞3, 张涛1,2, 邓兴4, 张正文1,2()   

  1. 1.重庆大学机械与运载工程学院,重庆 400044
    2.金属增材制造
    3.D打印)重庆市重点实验室,重庆 400044
    3.重庆邮电大学先进制造工程学院,重庆 400065
    4.中国核动力设计研究院第一研究所,四川 成都 610213
  • 通讯作者: 张正文
  • 作者简介:杨喆(1995—),男,硕士研究生,研究方向为多孔金属增材制造与应用。E-mail:201907131089@cqu.edu.cn
  • 基金资助:
    重庆市自然科学基金(cstc2020jcyj-zdxmX0021);重庆市教育委员会科学技术研究项目(KJQN202100650)

Abstract:

Traditional phase change materials are limited by their low thermal conductivity, and its phase change heat storage efficiency is difficult to improve. Adding a metal porous structure with high thermal conductivity to the phase change material is one of the important means to enhance heat transfer. In this paper, a three-dimensional, transient phase-change heat storage model including natural convection of a triply periodic minimal surface (TPMS) porous aluminum-paraffin composite phase change material was established. The solid-liquid interface evolution law, real-time temperature change, heat transfer characteristics and heat storage performance of the aluminum-paraffin composite phase change material in the heat storage process were studied by numerical simulation combined with experiment. The results showed that after adding two TPMS porous aluminum structures, primitive sheet (PS) and primitive network (PN) to pure paraffin, an obvious phase transition temperature platform appeared within the paraffin phase transition temperature range. Compared with pure paraffin wax, the initiation time of PS-paraffin and PN-paraffin composite phase change material decreased by 74.1% and 91.4%, respectively. The maximum temperature gradient in vertical direction decreased from 1605.7℃/m of pure paraffin to 840℃/m and 943.8℃/m of PS-paraffin and PN-paraffin composite phase change material, respectively. The heat storage rate was 3.10 times and 4.69 times higher than that of pure paraffin. Finally, the PS and PN porous aluminum structures were formed by selective laser melting (SLM) technology, and the TPMS porous aluminum-paraffin composite phase change material samples were prepared by casting method. The simulation results were verified by visual experimental platform, and the simulation results were found to be in good agreement with the experiment.

Key words: phase change heat storage, paraffin wax, triply periodic minimal surface(TPMS), porous aluminum, numerical simulation

摘要:

传统相变材料受限于自身热导率小,其相变蓄热效率难以提升,通过在相变材料中添加具有高热导率的金属多孔结构是强化传热的重要手段之一。本文建立了三周期极小曲面(triply periodic minimal surface,TPMS)多孔铝-石蜡复合相变材料的三维、瞬态包含自然对流的相变蓄热模型,利用数值仿真结合实验的方法研究了TPMS多孔铝-石蜡复合相变材料在蓄热过程中的固液相界面演变规律、实时温度变化、热传输特性以及蓄热性能。结果表明,在纯石蜡中添加primitive杆状(primitive sheet,PS)、primitive壳状(primitive network,PN)两种TPMS多孔铝结构后,石蜡相变温度范围内出现明显的相变温度平台,PS-石蜡、PN-石蜡复合相变材料的相变起始时间较纯石蜡分别减少了74.1%与91.4%,竖直方向上的最大温度梯度由纯石蜡的1605.7℃/m分别下降至PS-石蜡、PN-石蜡复合相变材料的840℃/m、943.8℃/m,蓄热速率较纯石蜡分别提高3.10倍、4.69倍。最后,通过选区激光熔化(selective laser melting,SLM)技术成型了PS、PN多孔铝结构,并采用浇筑法制备了TPMS多孔铝-石蜡复合相变材料样品,利用可视化实验平台对仿真结果进行实验验证,发现仿真结果同实验吻合较好。

关键词: 相变蓄热, 石蜡, 三周期极小曲面, 多孔铝, 数值模拟

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd