Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4907-4917.DOI: 10.16085/j.issn.1000-6613.2021-2411
• Materials science and technology • Previous Articles Next Articles
CAI Chuyue1(), FANG Xiaoming1,2, LING Ziye1,2, ZHANG Zhengguo1,2,3()
Received:
2021-11-23
Revised:
2021-12-27
Online:
2022-09-27
Published:
2022-09-25
Contact:
ZHANG Zhengguo
蔡楚玥1(), 方晓明1,2, 凌子夜1,2, 张正国1,2,3()
通讯作者:
张正国
作者简介:
蔡楚玥(1997—),女,硕士研究生,研究方向为传热强化。E-mail:374591187@qq.com。
基金资助:
CLC Number:
CAI Chuyue, FANG Xiaoming, LING Ziye, ZHANG Zhengguo. Research progress on thermal conductivity enhancement and form stability improvement of phase change thermal interface materials[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4907-4917.
蔡楚玥, 方晓明, 凌子夜, 张正国. 相变热界面材料导热增强及定形改善的研究进展[J]. 化工进展, 2022, 41(9): 4907-4917.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2411
材料 | 热导率/W·m-1·K-1 | 材料 | 热导率/W·m-1·K-1 |
---|---|---|---|
氧化铝 | 20~30 | 金刚石 | 2000 |
氮化硼 | 185~300 | 石墨 | 100~400 |
氮化铝 | 150~220 | 石墨烯 | >2000 |
铜 | 398 | 碳化硅 | 80~120 |
铝 | 315 | 碳纤维 | 400~700 |
银 | 417 | 碳纳米管 | 3000 |
镍 | 158 |
材料 | 热导率/W·m-1·K-1 | 材料 | 热导率/W·m-1·K-1 |
---|---|---|---|
氧化铝 | 20~30 | 金刚石 | 2000 |
氮化硼 | 185~300 | 石墨 | 100~400 |
氮化铝 | 150~220 | 石墨烯 | >2000 |
铜 | 398 | 碳化硅 | 80~120 |
铝 | 315 | 碳纤维 | 400~700 |
银 | 417 | 碳纳米管 | 3000 |
镍 | 158 |
1 | 高丽娜, 赵领. 温度应力下基于步进加速退化试验的电子器件寿命预测[J]. 电子元件与材料, 2014, 33(6): 72-76. |
GAO Lina, ZHAO Ling. Life prediction of electronic equipments based on step-stress accelerated degradation test under temperature stress[J]. Electronic Components and Materials, 2014, 33(6): 72-76. | |
2 | YOVANOVICH M M. Four decades of research on thermal contact, gap, and joint resistance in microelectronics[J]. IEEE Transactions on Components and Packaging Technologies, 2005, 28(2): 182-206. |
3 | SARVAR F, WHALLEY D C, CONWAY P P. Thermal interface materials: a review of the state of the art[C]//2006 1st Electronic Systemintegration Technology Conference. Dresden, IEEE, 2006: 1292-1302. |
4 | 杨斌, 孙蓉. 热界面材料产业现状与研究进展[J]. 中国基础科学, 2020, 22(2): 56-62. |
YANG Bin, SUN Rong. The current industry status and research progress in thermal interface materials[J]. China Basic Science, 2020, 22(2): 56-62. | |
5 | 周四丽, 张正国, 方晓明. 固-固相变储热材料的研究进展[J]. 化工进展, 2021, 40(3): 1371-1383. |
ZHOU Sili, ZHANG Zhengguo, FANG Xiaoming. Research progress of solid-solid phase change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1371-1383. | |
6 | IRFAN LONE M, JILTE R. A review on phase change materials for different applications[J]. Materials Today: Proceedings, 2021, 46: 10980-10986. |
7 | AFTAB Waseem, HUANG Xinyu, WU Wenhao, et al. Nanoconfined phase change materials for thermal energy applications[J]. Energy & Environmental Science, 2018, 11(6): 1392-1424. |
8 | RAZEEB K M, DALTON E, CROSS G L W, et al. Present and future thermal interface materials for electronic devices[J]. International Materials Reviews, 2018, 63(1): 1-21. |
9 | 史剑, 吴晓琳, 符显珠, 等. 相变热界面材料研究进展[J]. 材料导报, 2015, 29(S1): 151-156. |
SHI Jian, WU Xiaolin, FU Xianzhu, et al. Research progress of phase change thermal interface materials[J]. Materials Review, 2015, 29(S1): 151-156. | |
10 | LIU C Q, CHEN C, YU W, et al. Thermal properties of a novel form-stable phase change thermal interface materials olefin block copolymer/paraffin filled with Al2O3 [J]. International Journal of Thermal Sciences, 2020, 152: 106293. |
11 | LIU Z, CHUNG D D L. Boron nitride particle filled paraffin wax as a phase-change thermal interface material[J]. Journal of Electronic Packaging, 2006, 128(4): 319-323. |
12 | AOYAGI Y, LEONG C K, CHUNG D D L. Polyol-based phase-change thermal interface materials[J]. Journal of Electronic Materials, 2006, 35(3): 416-424. |
13 | WANG J F, XIE H Q, XIN Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes[J]. Thermochimica Acta, 2009, 488(1/2): 39-42. |
14 | LI M, CHEN M R, WU Z S, et al. Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material[J]. Energy Conversion and Management, 2014, 83: 325-329. |
15 | LI M, GUO Q G, CHEN Q W. Thermal conductivity improvement of heat-storage composite filled with milling modified carbon nanotubes[J]. International Journal of Green Energy, 2019, 16(15): 1617-1623. |
16 | ZOU D Q, MA X F, LIU X S, et al. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 120: 33-41. |
17 | QU Y, WANG S, ZHOU D, et al. Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives[J]. Renewable Energy, 2020, 146: 2637-2645. |
18 | MAO D S, XIE J Q, SHENG G Q, et al. Aluminum coated spherical particles filled paraffin wax as a phase-change thermal interface materials[C]//2017 18th International Conference on Electronic Packaging Technology (ICEPT). Harbin, IEEE, 2017: 828-830. |
19 | GUPTA N, KUMAR A, DHAWAN S K, et al. Metal nanoparticles enhanced thermophysical properties of phase change material for thermal energy storage[J]. Materials Today: Proceedings, 2020, 32: 463-467. |
20 | ZENG J L, CAO Z, YANG D W, et al. Thermal conductivity enhancement of Ag nanowires on an organic phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 385-389. |
21 | ZENG J L, ZHU F R, YU S B, et al. Effects of copper nanowires on the properties of an organic phase change material[J]. Solar Energy Materials and Solar Cells, 2012, 105: 174-178. |
22 | KIM W. Strategies for engineering phonon transport in thermoelectrics[J]. Journal of Materials Chemistry C, 2015, 3(40): 10336-10348. |
23 | CHEN Z W, ZHANG X Y, PEI Y Z. Manipulation of phonon transport in thermoelectrics[J]. Advanced Materials, 2018, 30(17): 1705617. |
24 | ZHANG Q, LIU J. Anisotropic thermal conductivity and photodriven phase change composite based on RT100 infiltrated carbon nanotube array[J]. Solar Energy Materials and Solar Cells, 2019, 190: 1-5. |
25 | 黄华, 吴扬, 刘长洪, 等. 热界面材料制备方法: CN100358132C[P]. 2007-12-26. |
HUANG Hua, WU Yang, LIU Changhong, et al. A preparation method of thermal interface materials: CN100358132C[P]. 2007-12-26. | |
26 | ZHANG L, ZHOU K C, WEI Q, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J]. Applied Energy, 2019, 233/234: 208-219. |
27 | ARAMESH M, SHABANI B. Metal foam-phase change material composites for thermal energy storage: a review of performance parameters[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111919. |
28 | ZHANG P, MENG Z N, ZHU H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J]. Applied Energy, 2017, 185: 1971-1983. |
29 | WANG G, WEI G S, XU C, et al. Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals[J]. Applied Thermal Engineering, 2019, 147: 464-472. |
30 | SABRINA FERFERA R, MADANI B, SERHANE R. Investigation of heat transfer improvement at idealized microcellular scale for metal foam incorporated with paraffin[J]. International Journal of Thermal Sciences, 2020, 156: 106444. |
31 | WANG X H, LU C N, RAO W. Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications[J]. Applied Thermal Engineering, 2021, 192: 116937. |
32 | HILL R F, STRADER J L. Practical utilization of low melting alloy thermal interface materials[C]//Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Dallas, IEEE, 2006: 23-27. |
33 | 李元元, 程晓敏. 低熔点合金传热储热材料的研究与应用[J]. 储能科学与技术, 2013, 2(3): 189-198. |
LI Yuanyuan, CHENG Xiaomin. Review on the low melting point alloys for thermal energy storage and heat transfer applications[J]. Energy Storage Science and Technology, 2013, 2(3): 189-198. | |
34 | DENG Y G, LIU J. Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device[J]. Applied Physics A, 2009, 95(3): 907-915. |
35 | JI Y L, YAN H L, XIAO X, et al. Excellent thermal performance of gallium-based liquid metal alloy as thermal interface material between aluminum substrates[J]. Applied Thermal Engineering, 2020, 166: 114649. |
36 | HUANG K Y, QIU W K, OU M L, et al. An anti-leakage liquid metal thermal interface material[J]. RSC Advances, 2020, 10(32): 18824-18829. |
37 | ROY C K, BHAVNANI S, HAMILTON M C, et al. Investigation into the application of low melting temperature alloys as wet thermal interface materials[J]. International Journal of Heat and Mass Transfer, 2015, 85: 996-1002. |
38 | CHU W X, TSENG P H, WANG C C. Utilization of low-melting temperature alloy with confined seal for reducing thermal contact resistance[J]. Applied Thermal Engineering, 2019, 163: 114438. |
39 | Indigo[EB/OL]. . |
40 | ZHANG Y F, LI W, HUANG J H, et al. Expanded graphite/paraffin/silicone rubber as high temperature form-stabilized phase change materials for thermal energy storage and thermal interface materials[J]. Materials, 2020, 13(4): 894. |
41 | LIU C Q, YU W, CHEN C, et al. Remarkably reduced thermal contact resistance of graphene/olefin block copolymer/paraffin form stable phase change thermal interface material[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120393. |
42 | 邓志军, 万炜涛, 陈田安. 一种橡胶改性的相变导热界面材料及制备方法: CN105441034A [P]. 2016-03-30. |
DENG Zhijun, WAN Weitao, CHEN Tian’an. A rubber modified phase change thermal interface material and preparation method: CN105441034A [P]. 2016-03-30. | |
43 | CAI Z D, LIU J, ZHOU Y X, et al. Flexible phase change materials with enhanced tensile strength, thermal conductivity and photo-thermal performance[J]. Solar Energy Materials and Solar Cells, 2021, 219: 110728. |
44 | RAJ C R, SURESH S, BHAVSAR R R, et al. Recent developments in thermo-physical property enhancement and applications of solid solid phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(5): 3023-3049. |
45 | 张杨飞, 李安然, 张聪. 一种固-固相变热界面材料及其制备方法: CN107163547A[P]. 2017-09-15. |
ZHANG Yangfei, LI Anran, ZHANG Cong, et al. Solid-solid phase change thermal interface material and preparation method thereof: CN107163547A[P]. 2017-09-15. | |
46 | ZHANG C, SHI Z, LI A, et al. RGO-coated polyurethane foam/segmented polyurethane composites as solid–solid phase change thermal interface material[J]. Polymers, 2020, 12(12): 3004. |
47 | FENG J, LIU Z J, ZHANG D Q, et al. Phase change materials coated with modified graphene-oxide as fillers for silicone rubber used in thermal interface applications[J]. New Carbon Materials, 2019, 34(2): 188-195. |
48 | WENG Z S, WU K, LUO F B, et al. Fabrication of high thermal conductive shape-stabilized polyethylene glycol/silica phase change composite by two-step sol-gel method[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110: 106-112. |
49 | ZHU X Y, LI X, SHEN J J, et al. Stable microencapsulated phase change materials with ultrahigh payload for efficient cooling of mobile electronic devices[J]. Energy Conversion and Management, 2020, 223: 113478. |
50 | ZHOU Y C, LI S S, ZHAO Y, et al. Compatible paraffin@SiO2 microcapsules/polydimethylsiloxane composites with heat storage capacity and enhanced thermal conductivity for thermal management[J]. Composites Science and Technology, 2022, 218: 109192. |
51 | GU X K, WEI Y J, YIN X B, et al. Colloquium: phononic thermal properties of two-dimensional materials[J]. Reviews of Modern Physics, 2018, 90(4): 041002. |
52 | MAO D S, CHEN J H, REN L L, et al. Spherical core-shell Al@Al2O3 filled epoxy resin composites as high-performance thermal interface materials[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 260-269. |
53 | DAI W, LYU L, LU J, et al. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods[J]. ACS Nano, 2019, 13(2): 1547-1554. |
54 | DAI W, MA T, YAN Q, et al. Metal-level thermally conductive yet soft graphene thermal interface materials[J]. ACS Nano, 2019, 13(10): 11561-11571. |
55 | RAMASWAMY C, SHINDE S, POMPEO F, et al. Phase change materials as a viable thermal interface material for high-power electronic applications[C]//The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543). Las Vegas, IEEE, 2004: 687-691. |
56 | TOMIZAWA Y, SASAKI K, KURODA A, et al. Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices[J]. Applied Thermal Engineering, 2016, 98: 320-329. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | SHI Yu, ZHAO Yunchao, FAN Zhixuan, JIANG Dahua. Experimental study on the optimum phase change temperature of phase change roofs in hot summer and cold winter areas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4828-4836. |
[5] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[6] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[7] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[8] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[9] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[10] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[11] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[12] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[13] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[14] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[15] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |