Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4928-4936.DOI: 10.16085/j.issn.1000-6613.2021-2443
• Materials science and technology • Previous Articles Next Articles
LI Qi(), CHENG Zefang, BAI Miao, HU Pengfei()
Received:
2021-11-29
Revised:
2022-02-05
Online:
2022-09-27
Published:
2022-09-25
Contact:
HU Pengfei
通讯作者:
胡鹏飞
作者简介:
李琪(1986—),女,博士,副教授,研究方向为强化传热传质、多孔介质热质输运。E-mail: liqi_1015@163.com。
基金资助:
CLC Number:
LI Qi, CHENG Zefang, BAI Miao, HU Pengfei. Melting characteristics of high porosity copper foam reinforced phase change materials[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4928-4936.
李琪, 成泽方, 白淼, 胡鹏飞. 高孔隙率泡沫铜强化相变材料熔化特性[J]. 化工进展, 2022, 41(9): 4928-4936.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2443
参数 | 石蜡 | 泡沫铜 |
---|---|---|
密度/kg·m-3 | 840 | 8978 |
比热容/J·kg-1·K-1 | 2100 | 381 |
热导率/W·m-1·K-1 | 0.2 | 387.6 |
熔点/K | 326 | — |
熔化潜热/J·kg-1 | 180000 | — |
动力黏度/kg·m-1·s-1 | 0.0269 | — |
热膨胀系数/K-1 | 0.00011 | — |
参数 | 石蜡 | 泡沫铜 |
---|---|---|
密度/kg·m-3 | 840 | 8978 |
比热容/J·kg-1·K-1 | 2100 | 381 |
热导率/W·m-1·K-1 | 0.2 | 387.6 |
熔点/K | 326 | — |
熔化潜热/J·kg-1 | 180000 | — |
动力黏度/kg·m-1·s-1 | 0.0269 | — |
热膨胀系数/K-1 | 0.00011 | — |
1 | 刘芳, 于航. 相变材料蓄能研究进展及其应用[J]. 建筑热能通风空调, 2010, 29(3): 34-39. |
LIU Fang, YU Hang. Research and application of thermal storage with phase change materials[J]. Building Energy & Environment, 2010, 29(3): 34-39. | |
2 | SAHA S, RUSLAN A R M, MONJUR MORSHED A K M, et al. Global prospects and challenges of latent heat thermal energy storage: a review[J]. Clean Technologies and Environmental Policy, 2021, 23(2): 531-559. |
3 | JOUHARA H, ŻABNIEŃSKA-GÓRA A, KHORDEHGAH N, et al. Latent thermal energy storage technologies and applications: a review[J]. International Journal of Thermofluids, 2020, 5/6: 100039. |
4 | JEGADHEESWARAN S, POHEKAR S D. Performance enhancement in latent heat thermal storage system: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2225-2244. |
5 | CHEN Xiao, CHENG Piao, TANG Zhaodi, et al. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion[J]. Advanced Science, 2021, 8(9): 2001274. |
6 | ZHU Wei, HU Naixiu, WEI Q, et al. Carbon nanotube-Cu foam hybrid reinforcements in composite phase change materials with enhanced thermal conductivity[J]. Materials & Design, 2019, 172: 107709. |
7 | 夏莉, 张鹏, 王如竹. 套管式相变储能单元的强化换热[J]. 化工学报, 2011, 62(S1): 37-41. |
XIA Li, ZHANG Peng, WANG Ruzhu. Heat transfer enhancement in shell-and-tube latent thermal energy storage units[J]. CIESC Journal, 2011, 62(S1): 37-41. | |
8 | SHARIFI N, BERGMAN T L, FAGHRI A. Enhancement of PCM melting in enclosures with horizontally-finned internal surfaces[J]. International Journal of Heat and Mass Transfer, 2011, 54(19/20): 4182-4192. |
9 | 杨磊, 张小松. 多熔点相变材料堆积蓄热床蓄热性能分析[J]. 化工学报, 2012, 63(4): 1032-1037. |
YANG Lei, ZHANG Xiaosong. Charge performance of packed bed thermal storage unit with phase change material having different melting points[J]. CIESC Journal, 2012, 63(4): 1032-1037. | |
10 | ZHONG Yajuan, GUO Quangui, LI Sizhong, et al. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 1011-1014. |
11 | 万倩, 王铭婕, 何露茜, 等. 泡沫铜/石蜡复合相变储能材料的储放热过程及数值模拟[J]. 化工进展, 2022, 41(4): 2046-2053. |
WAN Qian, WANG Mingjie, HE Luxi, et al. Heat storage and release process nad numerical simulation of copper foam/paraffin composite phase change meterial[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2046-2053. | |
12 | LANGURI E M, AIGBOTSUA C O, ALVARADO J L. Latent thermal energy storage system using phase change material in corrugated enclosures[J]. Applied Thermal Engineering, 2013, 50(1): 1008-1014. |
13 | SHEN Z L, BROOKS A L, HE Y W, et al. Physics-guided multi-objective mixture optimization for functional cementitious composites containing microencapsulated phase changing materials[J]. Materials & Design, 2021, 207: 109842. |
14 | LI Benxia, LIU Tongxuan, HU Luyang, et al. Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 374-380. |
15 | 杨小平, 杨晓西, 丁静, 等. 多孔介质高温蓄热的热性能分析[J]. 工程热物理学报, 2012, 33(3): 477-480. |
YANG Xiaoping, YANG Xiaoxi, DING Jing, et al. The thermal analysis of porous medium for high-temperature thermal storage[J]. Journal of Engineering Thermophysics, 2012, 33(3): 477-480. | |
16 | DUAN Juan, LI Fan. Transient heat transfer analysis of phase change material melting in metal foam by experimental study and artificial neural network[J]. Journal of Energy Storage, 2021, 33: 102160. |
17 | MADRUGA S. Modeling of enhanced micro-energy harvesting of thermal ambient fluctuations with metallic foams embedded in phase change materials[J]. Renewable Energy, 2021, 168: 424-437. |
18 | MENG Xi, YAN Lianyu, XU Jiaqi, et al. Effect of porosity and pore density of copper foam on thermal performance of the paraffin-copper foam composite phase-change material[J]. Case Studies in Thermal Engineering, 2020, 22: 100742. |
19 | GHALAMBAZ M, SHAHABADI M, MEHRYAN S A M, et al. Latent heat thermal storage of nano-enhanced phase change material filled by copper foam with linear porosity variation in vertical direction[J]. Energies, 2021, 14(5): 1508. |
20 | HU Xusheng, ZHU Feng, GONG Xiaolu. Experimental and numerical study on the thermal behavior of phase change material infiltrated in low porosity metal foam[J]. Journal of Energy Storage, 2019, 26: 101005. |
21 | CHEN Zhenqian, GAO Dongyan, SHI Juan. Experimental and numerical study on melting of phase change materials in metal foams at pore scale[J]. International Journal of Heat and Mass Transfer, 2014, 72: 646-655. |
22 | LI W Q, QU Z G, HE Y L, et al. Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J]. Applied Thermal Engineering, 2012, 37: 1-9. |
23 | 刘洋, 段建国, 贺秀芬, 等. 低温相变储能单元强化传热特性实验[J]. 太阳能学报, 2020, 41(6): 335-340. |
LIU Yang, DUAN Jianguo, HE Xiufen, et al. Experiments on enhanced heat transfer performance of low temperature latent thermal energy storage unit[J]. Acta Energiae Solaris Sinica, 2020, 41(6): 335-340. | |
24 | 徐祥贵, 王丽琼, 王君雷, 等. 泡沫金属复合PCM微结构传热储热过程模拟[J]. 化工学报, 2021, 72(2): 956-964. |
XU Xianggui, WANG Liqiong, WANG Junlei, et al. Simulation on heat transfer and thermal storage processes of foamed metal composite PCM microstructure[J]. CIESC Journal, 2021, 72(2): 956-964. | |
25 | ZHAO C Y, LU W, TIAN Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy, 2010, 84(8): 1402-1412. |
26 | LIU Zhenyu, YAO Yuanpeng, WU Huiying. Numerical modeling for solid-liquid phase change phenomena in porous media: shell-and-tube type latent heat thermal energy storage[J]. Applied Energy, 2013, 112: 1222-1232. |
27 | XU Weiqiang, YUAN Xiugan. Heat absorbing and releasing experiments with improved phase-change thermal storage canisters[J]. Chinese Journal of Aeronautics, 2010, 23(3): 306-311. |
28 | SAEDODIN S, ZAMZAMIAN S A H, NIMVARI M E, et al. Performance evaluation of a flat-plate solar collector filled with porous metal foam: experimental and numerical analysis[J]. Energy Conversion and Management, 2017, 153: 278-287. |
29 | 杲东彦, 陈振乾, 陈凌海. 开孔泡沫铝内石蜡融化相变过程的可视化实验研究[J]. 化工学报, 2014, 65(S1): 95-100. |
GAO Dongyan, CHEN Zhenqian, CHEN Linghai. Visualized experiment of melting of paraffin wax in aluminum foam with open cells[J]. CIESC Journal, 2014, 65(S1): 95-100. | |
30 | 唐家鹏. ANSYS FLUENT 16.0超级学习手册[M]. 北京: 人民邮电出版社, 2016. |
TANG Jiapeng. ANSYS FLUENT 16.0 super learning manual[M]. Beijing: Posts & Telecom Press, 2016. | |
31 | ZHENG Huanpei, WANG Changhong, LIU Qingming, et al. Thermal performance of copper foam/paraffin composite phase change material[J]. Energy Conversion and Management, 2018, 157: 372-381. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[4] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[5] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[6] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[7] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[8] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[9] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[10] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[11] | SHI Yu, ZHAO Yunchao, FAN Zhixuan, JIANG Dahua. Experimental study on the optimum phase change temperature of phase change roofs in hot summer and cold winter areas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4828-4836. |
[12] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[13] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[14] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[15] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |