Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4937-4945.DOI: 10.16085/j.issn.1000-6613.2021-2364
• Materials science and technology • Previous Articles Next Articles
PU Fulong(), WU Shangwei, ZHENG Yingling, ZHENG Yuyi, HOU Xuedan()
Received:
2021-11-18
Revised:
2022-01-10
Online:
2022-09-27
Published:
2022-09-25
Contact:
HOU Xuedan
通讯作者:
侯雪丹
作者简介:
蒲福龙(1996—),男,硕士研究生,研究方向为生物质转化。E-mail:2111906059@mail2.gdut.edu.cn。
基金资助:
CLC Number:
PU Fulong, WU Shangwei, ZHENG Yingling, ZHENG Yuyi, HOU Xuedan. Effect of lignin extracted by lactic acid-based deep eutectic solvent from rice straw on cellulase hydrolysis efficiency[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4937-4945.
蒲福龙, 伍尚炜, 郑映玲, 郑玉意, 侯雪丹. 基于乳酸的深度共熔溶剂提取秸秆木质素对纤维素酶水解效率的影响[J]. 化工进展, 2022, 41(9): 4937-4945.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2364
样品 | Гmax/mg∙g-1 | K/mL∙mg-1 | R/L∙g-1 |
---|---|---|---|
L-LC | 46.35 | 3.39 | 0.157 |
L-LGH | 29.81 | 5.57 | 0.166 |
L-LArg | 4.52 | 5.69 | 0.026 |
L-LBH | 25.79 | 2.47 | 0.064 |
样品 | Гmax/mg∙g-1 | K/mL∙mg-1 | R/L∙g-1 |
---|---|---|---|
L-LC | 46.35 | 3.39 | 0.157 |
L-LGH | 29.81 | 5.57 | 0.166 |
L-LArg | 4.52 | 5.69 | 0.026 |
L-LBH | 25.79 | 2.47 | 0.064 |
样品 | 疏水性/L∙g-1 | R2 |
---|---|---|
L-LC | 0.0153 | 0.9874 |
L-LGH | 0.0112 | 0.9856 |
L-LArg | 0.0332 | 0.9874 |
L-LBH | 0.0103 | 0.9262 |
样品 | 疏水性/L∙g-1 | R2 |
---|---|---|
L-LC | 0.0153 | 0.9874 |
L-LGH | 0.0112 | 0.9856 |
L-LArg | 0.0332 | 0.9874 |
L-LBH | 0.0103 | 0.9262 |
1 | HUANG Caoxing, LIN Wenqian, LAI Chenhuan, et al. Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues[J]. Bioresource Technology, 2019, 285: 121355. |
2 | 曹运齐, 解先利, 郭振强, 等. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495. |
CAO Yunqi, XIE Xianli, GUO Zhenqiang, et al. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495. | |
3 | VERMAAS J V, PETRIDIS L, QI X H et al. Mechanism of lignin inhibition of enzymatic biomass deconstruction[J]. Biotechnology for Biofuels, 2015, 8: 217. |
4 | RAHIKAINEN J, MIKANDER S, MARJAMAA K, et al. Inhibition of enzymatic hydrolysis by residual lignins from softwood—study of enzyme binding and inactivation on lignin-rich surface[J]. Biotechnology and Bioengineering, 2011, 108(12): 2823-2834. |
5 | 金永灿, 陈慧, 吴文娟, 等. 水溶性木质素对纤维原料酶水解的影响研究进展[J]. 林业工程学报, 2020, 5(4): 12-19. |
JIN Yongcan, CHEN Hui, WU Wenjuan, et al. Investigations of the effect of water-soluble lignin on enzymatic hydrolysis of lignocellulose[J]. Journal of Forestry Engineering, 2020, 5(4): 12-19. | |
6 | NAKAGAME S, CHANDRA R P, KADLA J F, et al. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose[J]. Bioresource Technology, 2011, 102(6): 4507-4517. |
7 | YOO C G, LI M, MENG X Z, et al. Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis[J]. Green Chemistry, 2017, 19(8): 2006-2016. |
8 | PAN Xuejun. Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose[J]. Journal of Biobased Materials and Bioenergy, 2008, 2(1): 25-32. |
9 | SEWALT V J H, GLASSER W G, BEAUCHEMIN K A. Lignin impact on fiber degradation. 3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives[J]. Journal of Agricultural and Food Chemistry, 1997, 45(5): 1823-1828. |
10 | GUO Fenfen, SHI Wenjing, SUN Wan, et al. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism[J]. Biotechnology for Biofuels, 2014, 7(1): 38. |
11 | YU Z Y, GWAK K S, TREASURE T, et al. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass[J]. ChemSusChem, 2014, 7(7): 1942-1950. |
12 | ALCANFOR A A C, DOS SANTOS L P M, DIAS D F, et al. Electrodeposition of indium on copper from deep eutectic solvents based on choline chloride and ethylene glycol[J]. Electrochimica Acta, 2017, 235: 553-560. |
13 | KRYSTOF M, PÉREZ-SÁNCHEZ M, DOMÍNGUEZ DE MARÍA P. Lipase-catalyzed (trans)esterification of 5-hydroxy- methylfurfural and separation from HMF esters using deep-eutectic solvents[J]. ChemSusChem, 2013, 6(4): 630-634. |
14 | LOOW Y L, NEW E K, YANG G H, et al. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion[J]. Cellulose, 2017, 24(9): 3591-3618. |
15 | LYNAM J G, KUMAR N, WONG M J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density[J]. Bioresource Technology, 2017, 238: 684-689. |
16 | 司马国宝, 王帅, 崔莹, 等. 低共熔溶剂对木质纤维素分离及木质素提取的研究进展[J]. 现代化工, 2019, 39(9): 26-30. |
SIMA Guobao, WANG Shuai, CUI Ying, et al. Research progress in lignocellulose separation and lignin extraction by deep eutectic solvents[J]. Modern Chemical Industry, 2019, 39(9): 26-30. | |
17 | 李鹏辉, 任建鹏, 吴文娟. 木质素在低共熔溶剂中降解的研究进展[J]. 中国造纸, 2022, 41(1): 78-85. |
LI Penghui, REN Jianpeng, WU Wenjuan. Research progress of lignin degradation in deep eutectic solvents[J]. China Pulp & Paper, 2022, 41(1): 78-85. | |
18 | FRANCISCO M, VAN DEN BRUINHORST A, KROON M C. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012, 14(8): 2153. |
19 | BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254. |
20 | HUANG Caoxing, HE Juan, MIN Douyong, et al. Understanding the nonproductive enzyme adsorption and physicochemical properties of residual lignins in moso bamboo pretreated with sulfuric acid and kraft pulping[J]. Applied Biochemistry and Biotechnology, 2016, 180(8): 1508-1523. |
21 | MÜLLER R H, RÜHL D, LÜCK M, et al. Influence of fluorescent labelling of polystyrene particles on phagocytic uptake, surface hydrophobicity, and plasma protein adsorption[J]. Pharmaceutical Research, 1997, 14(1): 18-24. |
22 | ZAWADZKI M, RAGAUSKAS A. N-hydroxy compounds as new internal standards for the ~31P-NMR determination of lignin hydroxy functional groups[J]. Holzforschung, 2001, 55(3): 283-285. |
23 | WEN Jialong, SUN Shaolong, YUAN Tongqi, et al. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction[J]. Applied Energy, 2014, 121: 1-9. |
24 | 冯国坚. 胆碱类溶剂作用于生物质的结构与功能关系及分子机制[D]. 广州: 广东工业大学, 2021. |
FENG Guojian. The structure-function relationships and molecular mechanism of choline-based solvents on biomass fractionation[D]. Guangzhou: Guangdong University of Technology, 2021. | |
25 | ALVAREZ-VASCO C, MA R S, QUINTERO M, et al. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization[J]. Green Chemistry, 2016, 18(19): 5133-5141. |
26 | COSTA LOPES A M DA, GOMES J R B, COUTINHO J A P, et al. Novel insights into biomass delignification with acidic deep eutectic solvents: a mechanistic study of β-O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance[J]. Green Chemistry, 2020, 22(8): 2474-2487. |
27 | ZHONG Lei, WANG Chao, YANG Guihua, et al. Rapid and efficient microwave-assisted guanidine hydrochloride deep eutectic solvent pretreatment for biological conversion of castor stalk[J]. Bioresource Technology, 2022, 343: 126022. |
28 | HOU Xuedan, LI Aolin, LIN Kaipeng, et al. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresource Technology, 2018, 249: 261-267. |
29 | WANG Jinye, XU Yong, MENG Xianzhi, et al. Production of xylo-oligosaccharides from poplar by acetic acid pretreatment and its impact on inhibitory effect of poplar lignin[J]. Bioresource Technology, 2021, 323: 124593. |
30 | YAO L, YANG H T, YOO C G, et al. A mechanistic study of cellulase adsorption onto lignin[J]. Green Chemistry, 2021, 23(1): 333-339. |
31 | LAN T Q, WANG S R, LI H, et al. Effect of lignin isolated from p-toluenesulfonic acid pretreatment liquid of sugarcane bagasse on enzymatic hydrolysis of cellulose and cellulase adsorption[J]. Industrial Crops and Products, 2020, 155: 112768. |
32 | SAMMOND D W, YARBROUGH J M, MANSFIELD E, et al. Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity[J]. Journal of Biological Chemistry, 2014, 289(30): 20960-20969. |
33 | SAKKOS J K, MUTLU B R, WACKETT L P, et al. Adsorption and biodegradation of aromatic chemicals by bacteria encapsulated in a hydrophobic silica gel[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26848-26858. |
34 | GEORGELIS N, YENNAWAR N H, COSGROVE D J. Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(37): 14830-14835. |
35 | SONG Y L, CHANDRA R P, ZHANG X, et al. Non-productive celluase binding onto deep eutectic solvent (DES) extracted lignin from willow and corn stover with inhibitory effects on enzymatic hydrolysis of cellulose[J]. Carbohydrate Polymers, 2020, 250: 116956. |
36 | LOURENÇON T V, HANSEL F A, SILVA T A DA, et al. Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation[J]. Separation and Purification Technology, 2015, 154: 82-88. |
37 | SUN R C, SUN X F, WANG S Q, et al. Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood[J]. Industrial Crops and Products, 2002, 15(3): 179-188. |
38 | MOXLEY G, GASPAR A R, HIGGINS D, et al. Structural changes of corn stover lignin during acid pretreatment[J]. Journal of Industrial Microbiology and Biotechnology, 2012, 39(9): 1289-1299. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[7] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[8] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[9] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[10] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[11] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[12] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[13] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[14] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[15] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |