Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 4859-4870.DOI: 10.16085/j.issn.1000-6613.2023-1434
• Energy processes and technology • Previous Articles
ZHANG Wei1,2(), SONG Quanbin1,2(), ZHOU Yunhe1,2, DONG Mengyao1,2, LI Jie1,2, WU Qiao1,2, FU Yehao1,2, LIANG Yaocheng1,2, YIN Yanshan1,2, CHENG Shan1,2, SONG Jian3
Received:
2023-08-16
Revised:
2023-11-20
Online:
2024-09-30
Published:
2024-09-15
Contact:
ZHANG Wei, SONG Quanbin
张巍1,2(), 宋权斌1,2(), 周运河1,2, 董梦瑶1,2, 李婕1,2, 伍乔1,2, 付业昊1,2, 梁垚城1,2, 尹艳山1,2, 成珊1,2, 宋健3
通讯作者:
张巍,宋权斌
作者简介:
张巍(1974—),男,博士,副教授,硕士生导师,研究方向为能源高效清洁利用。E-mail:weizhang@csust.edu.cn基金资助:
CLC Number:
ZHANG Wei, SONG Quanbin, ZHOU Yunhe, DONG Mengyao, LI Jie, WU Qiao, FU Yehao, LIANG Yaocheng, YIN Yanshan, CHENG Shan, SONG Jian. Selectivity of ion conductive membranes in all-vanadium flow battery[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4859-4870.
张巍, 宋权斌, 周运河, 董梦瑶, 李婕, 伍乔, 付业昊, 梁垚城, 尹艳山, 成珊, 宋健. 全钒液流电池离子导电膜的选择性[J]. 化工进展, 2024, 43(9): 4859-4870.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1434
膜类型 | 电池性能 | |||||
---|---|---|---|---|---|---|
库仑效率/% | 电压效率/% | 能量效率/% | 电流密度/mA·cm-2 | 循环次数 | 容量保持率/% | |
阳离子交换膜 | ||||||
Nafion 117[ | 93 | 85 | 79 | 80 | 200 | 50 |
Nafion/SiO2[ | >N117 | >N117 | 79.9 | 20 | 100 | — |
Nafion/PBI[ | 97.72 | 83 | 81.31 | 200 | 300 | 73.25 |
阴离子交换膜 | ||||||
P-TPN1[ | 99.9 | 80.2 | 80.1 | 80 | 150 | 70 |
PSf-MIm[ | 90.7 | — | 82.4 | 120 | 4800 | 65.9 |
PTP-CHPTMA[ | 99 | 91.3 | 90 | 60 | 580 | 38.1 |
PBI-BPTMA[ | 99 | 83 | 82.7 | 80 | 200 | 55.9 |
两性离子交换膜 | ||||||
N/Ng-PSBMA-20%[ | 91 | 93 | 84.8 | 60 | 100 | 95 |
双功能侧链[ | 96 | 92 | 80.11 | 80 | 50 | 81.97 |
PPO-TTA[ | 94.3 | 95 | 90.3 | 80 | 50 | 48 |
60SPAEK-6F-co-10%BI-cld[ | 99.1 | 89.8 | 89 | 30 | 220 | — |
S/APP-5%[ | 96.4 | 86.1 | 83 | 60 | 50 | 47 |
多孔导电膜 | ||||||
PES/SPEEK[ | 98 | 92 | 90 | 80 | >500 | — |
SPC-40[ | 92 | 87 | 93.5 | 80 | 300 | 39.9 |
多孔PBI[ | 99.29 | 83 | 81.93 | 200 | — | — |
CMPSF/TMA[ | >99 | >80 | >80 | 80 | >1500 | >N115 |
PVDF-HFP/PVP[ | 98 | 89 | 88 | 80 | 160 | >N115 |
膜类型 | 电池性能 | |||||
---|---|---|---|---|---|---|
库仑效率/% | 电压效率/% | 能量效率/% | 电流密度/mA·cm-2 | 循环次数 | 容量保持率/% | |
阳离子交换膜 | ||||||
Nafion 117[ | 93 | 85 | 79 | 80 | 200 | 50 |
Nafion/SiO2[ | >N117 | >N117 | 79.9 | 20 | 100 | — |
Nafion/PBI[ | 97.72 | 83 | 81.31 | 200 | 300 | 73.25 |
阴离子交换膜 | ||||||
P-TPN1[ | 99.9 | 80.2 | 80.1 | 80 | 150 | 70 |
PSf-MIm[ | 90.7 | — | 82.4 | 120 | 4800 | 65.9 |
PTP-CHPTMA[ | 99 | 91.3 | 90 | 60 | 580 | 38.1 |
PBI-BPTMA[ | 99 | 83 | 82.7 | 80 | 200 | 55.9 |
两性离子交换膜 | ||||||
N/Ng-PSBMA-20%[ | 91 | 93 | 84.8 | 60 | 100 | 95 |
双功能侧链[ | 96 | 92 | 80.11 | 80 | 50 | 81.97 |
PPO-TTA[ | 94.3 | 95 | 90.3 | 80 | 50 | 48 |
60SPAEK-6F-co-10%BI-cld[ | 99.1 | 89.8 | 89 | 30 | 220 | — |
S/APP-5%[ | 96.4 | 86.1 | 83 | 60 | 50 | 47 |
多孔导电膜 | ||||||
PES/SPEEK[ | 98 | 92 | 90 | 80 | >500 | — |
SPC-40[ | 92 | 87 | 93.5 | 80 | 300 | 39.9 |
多孔PBI[ | 99.29 | 83 | 81.93 | 200 | — | — |
CMPSF/TMA[ | >99 | >80 | >80 | 80 | >1500 | >N115 |
PVDF-HFP/PVP[ | 98 | 89 | 88 | 80 | 160 | >N115 |
33 | DAI Jicui, ZHANG Hongqiang, SUI Zhaobin, et al. Study on Nafion/Nafion-g-poly(sulfobetaine methacrylate)-blended amphoteric membranes for vanadium redox flow battery[J]. Ionics, 2020, 26(2): 801-811. |
34 | LIU Lei, WANG Chao, HE Zhenfeng, et al. Bi-functional side chain architecture tuned amphoteric ion exchange membranes for high-performance vanadium redox flow batteries[J]. Journal of Membrane Science, 2021, 624: 119118. |
35 | ZHANG Huaqing, YAN Xiaoming, GAO Li, et al. Novel triple tertiary amine polymer-based hydrogen bond network inducing highly efficient proton-conducting channels of amphoteric membranes for high-performance vanadium redox flow battery[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5003-5014. |
36 | LIAO J B, LU M Z, CHU Y Q, et al. Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries[J]. Journal of Power Sources, 2015, 282: 241-247. |
37 | WANG Gang, ZHANG Miaomiao, HE Zhenhua, et al. Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone) with ammonium polyphosphate for vanadium redox flow battery applications[J]. Journal of Applied Polymer Science, 2021, 138(25): e50592. |
38 | LU Wenjing, YUAN Zhizhang, ZHAO Yuyue, et al. High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces[J]. Energy & Environmental Science, 2016, 9(7): 2319-2325. |
39 | JEON Choongseop, CHOI Chanyong, KIM Hee-Tak, et al. Achieving fast proton transport and high vanadium ion rejection with uniformly mesoporous composite membranes for high-efficiency vanadium redox flow batteries[J]. ACS Applied Energy Materials, 2020, 3(6): 5874-5881. |
40 | LU Wenjing, YUAN Zhizhang, ZHAO Yuyue, et al. Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application[J]. Energy Storage Materials, 2018, 10: 40-47. |
41 | ZHAO Yuyue, ZHANG Huamin, XIAO Chuanhai, et al. Highly selective charged porous membranes with improved ion conductivity[J]. Nano Energy, 2018, 48: 353-360. |
42 | LU Wenjing, SHI Dingqin, ZHANG Huamin, et al. Highly selective core-shell structural membrane with cage-shaped pores for flow battery[J]. Energy Storage Materials, 2019, 17: 325-333. |
43 | KUSHNER Douglas I, CROTHERS Andrew R, KUSOGLU Ahmet, et al. Transport phenomena in flow battery ion-conducting membranes[J]. Current Opinion in Electrochemistry, 2020, 21: 132-139. |
44 | CROTHERS Andrew R, DARLING Robert M, KUSHNER Douglas I, et al. Theory of multicomponent phenomena in cation-exchange membranes: Part Ⅲ. transport in vanadium redox-flow-battery separators[J]. Journal of the Electrochemical Society, 2020, 167(1): 013549. |
45 | SUN Chenxi, CHEN Jian, ZHANG Huamin, et al. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery[J]. Journal of Power Sources, 2010, 195(3): 890-897. |
46 | CHOI Chanyong, KIM Soohyun, KIM Riyul, et al. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 263-274. |
47 | LEMMERMANN Torben, BECKER Maik, STEHLE Maria, et al. In situ and in operando detection of redox reactions with integrated potential probes during vanadium transport in ion exchange membranes[J]. Journal of Power Sources, 2022, 533: 231343. |
48 | DARLING Robert M, WEBER Adam Z, TUCKER Michael C, et al. The influence of electric field on crossover in redox-flow batteries[J]. Journal of the Electrochemical Society, 2015, 163(1): A5014-A5022. |
49 | LUO Qingtao, LI Liyu, NIE Zimin, et al. In-situ investigation of vanadium ion transport in redox flow battery[J]. Journal of Power Sources, 2012, 218: 15-20. |
50 | 孙炼, 王洪磊, 余金山, 等. 金属有机框架质子导体及其质子交换膜的研究进展[J]. 化学学报, 2020, 78(9): 888-900. |
SUN Lian, WANG Honglei, YU Jinshan, et al. Recent progress on proton-conductive metal-organic frameworks and their proton exchange membranes[J]. Acta Chimica Sinica, 2020, 78(9): 888-900. | |
51 | XIN Li, ZHANG Dezhu, QU Kai, et al. Zr-MOF-enabled controllable ion sieving and proton conductivity in flow battery membrane[J]. Advanced Functional Materials, 2021, 31(42): 2104629. |
52 | TAN Qinglong, LU Shanfu, SI Jiangju, et al. A bunch-like tertiary amine grafted polysulfone membrane for VRFBs with simultaneously high proton conductivity and low vanadium ion permeability[J]. Macromolecular Rapid Communications, 2017, 38(8): 1600710. |
53 | LONG Jun, XU Wenjie, XU Shoubin, et al. A novel double branched sulfonated polyimide membrane with ultra-high proton selectivity for vanadium redox flow battery[J]. Journal of Membrane Science, 2021, 628: 119259. |
54 | SUN Chuanyu, NEGRO Enrico, Keti VEZZÙ, et al. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries[J]. Electrochimica Acta, 2019, 309: 311-325. |
55 | ZHANG Yue, ZHOU Xinjie, XUE Rui, et al. Proton exchange membranes with ultra-low vanadium ions permeability improved by sulfated zirconia for all vanadium redox flow battery[J]. International Journal of Hydrogen Energy, 2019, 44(12): 5997-6006. |
1 | PONCE DE LEÓN C, FRÍAS-FERRER A, GONZÁLEZ-GARCÍA J, et al. Redox flow cells for energy conversion[J]. Journal of Power Sources, 2006, 160(1): 716-732. |
2 | 李彦, 徐铜文. 全钒液流电池用离子交换膜的研究进展[J]. 化工学报, 2015, 66(9): 3296-3304. |
LI Yan, XU Tongwen. Development of ion exchange membrane for all-vanadium redox flow battery[J]. CIESC Journal, 2015, 66(9): 3296-3304. | |
3 | 王保国. 电化学能源转化膜与膜过程研究进展[J]. 膜科学与技术, 2020, 40(1): 179-187. |
WANG Baoguo. A review on membranes and membrane processes for electrochemical energy conversion applications[J]. Membrane Science and Technology, 2020, 40(1): 179-187. | |
4 | DAI Qing, LIU Zhiqiang, HUANG Ling, et al. Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery[J]. Nature Communications, 2020, 11(1): 13. |
5 | 王斐然, 蒋峰景. 全钒液流电池离子导电膜[J]. 化学进展, 2021, 33(3): 462-470. |
WANG Feiran, JIANG Fengjing. Ion-vonducting membrane for vanadium redox flow batteries[J]. Progress in Chemistry, 2021, 33(3): 462-470. | |
6 | KOH P W, YULIATI L, LEE S L. Effect of transition metal oxide doping (Cr, Co, V) in the photocatalytic activity of TiO2 for congo red degradation under visible light[J]. Jurnal Teknologi, 2014, 69(5): 45-50. |
7 | Dennis DÜERKOP, WIDDECKE Hartmut, SCHILDE Carsten, et al. Polymer membranes for all-vanadium redox flow batteries: A review[J]. Membranes, 2021, 11(3): 214. |
8 | Zhensheng MAI, ZHANG Huamin, LI Xianfeng, et al. Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application[J]. Journal of Power Sources, 2011, 196(13): 5737-5741. |
9 | ZHANG Daishuang, WANG Qian, PENG Sangshan, et al. An interface-strengthened cross-linked graphene oxide/Nafion212 composite membrane for vanadium flow batteries[J]. Journal of Membrane Science, 2019, 587: 117189. |
56 | DAI Wenjing, SHEN Yi, LI Zhaohua, et al. SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery[J]. Journal of Materials Chemistry A, 2014, 2(31): 12423-12432. |
57 | KIM Jihoon, LEE Yongkyu, JEON Jae-Deok, et al. Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries[J]. Journal of Power Sources, 2018, 383: 1-9. |
58 | Yeonho AHN, KIM Dukjoon. Ultra-low vanadium ion permeable electrolyte membrane for vanadium redox flow battery by pore filling of PTFE substrate[J]. Energy Storage Materials, 2020, 31: 105-114. |
59 | LI Jinchao, LIU Jun, XU Wenjie, et al. A sulfonated polyimide/nafion blend membrane with high proton selectivity and remarkable stability for vanadium redox flow battery[J]. Membranes, 2021, 11(12): 946. |
60 | FU Zhimin, LIU Jinying, LIU Qifeng. SPEEK/PVDF/PES composite as alternative proton exchange membrane for vanadium redox flow batteries[J]. Journal of Electronic Materials, 2016, 45(1): 666-671. |
61 | WU Jine, DAI Qing, ZHANG Huamin, et al. Recent development in composite membranes for flow batteries[J]. ChemSusChem, 2020, 13(15): 3805-3819. |
62 | LI Yun, LI Xianfeng, CAO Jingyu, et al. Composite porous membranes with an ultrathin selective layer for vanadium flow batteries[J]. Chemical Communications, 2014, 50(35): 4596-4599. |
63 | PADDISON Stephen J, PAUL Reginald. The nature of proton transport in fully hydrated Nafion® [J]. Physical Chemistry Chemical Physics, 2002, 4(7): 1158-1163. |
64 | TUNG Siu On, FISHER Sydney L, KOTOV Nicholas A, et al. Nanoporous aramid nanofibre separators for nonaqueous redox flow batteries[J]. Nature Communications, 2018, 9: 4193. |
65 | SHIN Dong Won, GUIVER Michael D, LEE Young Moo. Hydrocarbon-based polymer electrolyte membranes: Importance of morphology on ion transport and membrane stability[J]. Chemical Reviews, 2017, 117(6): 4759-4805. |
66 | KIM Soohyun, CHOI Junghoon, CHOI Chanyong, et al. Pore-size-tuned graphene oxide frameworks as ion-selective and protective layers on hydrocarbon membranes for vanadium redox-flow batteries[J]. Nano Letters, 2018, 18(6): 3962-3968. |
67 | YUAN Zhizhang, ZHU Xiangxue, LI Mingrun, et al. A highly ion-selective zeolite flake layer on porous membranes for flow battery applications[J]. Angewandte Chemie, 2016, 55(9): 3058-3062. |
10 | LIU Jiaman, YU Liwei, CAI Xingke, et al. Sandwiching h-BN monolayer films between sulfonated poly(ether ether ketone) and nafion for proton exchange membranes with improved ion selectivity[J]. ACS Nano, 2019, 13(2): 2094-2102. |
11 | ZHANG Bengui, WANG Qi, GUAN Shanshan, et al. High performance membranes based on new 2-adamantane containing poly(aryl ether ketone) for vanadium redox flow battery applications[J]. Journal of Power Sources, 2018, 399: 18-25. |
12 | CHEN Dongyang, HICKNER Michael A, AGAR Ertan, et al. Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries[J]. Electrochemistry Communications, 2013, 26: 37-40. |
13 | CHEN Dongyang, HICKNER Michael A. Degradation of imidazolium-and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 5775-5781. |
14 | SHUKLA Geetanjali, SHAHI Vinod K. Amine functionalized graphene oxide containing C16 chain grafted with poly(ether sulfone) by DABCO coupling: Anion exchange membrane for vanadium redox flow battery[J]. Journal of Membrane Science, 2019, 575: 109-117. |
15 | LIU Lei, WANG Chao, HE Zhenfeng, et al. An overview of amphoteric ion exchange membranes for vanadium redox flow batteries[J]. Journal of Materials Science & Technology, 2021, 69: 212-227. |
16 | NIBEL Olga, ROJEK Tomasz, SCHMIDT Thomas J, et al. Amphoteric ion-exchange membranes with significantly improved vanadium barrier properties for all-vanadium redox flow batteries[J]. ChemSusChem, 2017, 10(13): 2767-2777. |
17 | QIU Jingyi, ZHAI Maolin, CHEN Jinhua, et al. Performance of vanadium redox flow battery with a novel amphoteric ion exchange membrane synthesized by two-step grafting method[J]. Journal of Membrane Science, 2009, 342(1/2): 215-220. |
18 | LIU Shuai, WANG Lihua, DING Yue, et al. Novel sulfonated poly(ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications[J]. Electrochimica Acta, 2014, 130: 90-96. |
19 | LI Zhaohua, DAI Wenjing, YU Lihong, et al. Sulfonated poly(ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery[J]. Journal of Power Sources, 2014, 257: 221-229. |
20 | ZHOU X L, ZHAO T S, AN L, et al. Modeling of ion transport through a porous separator in vanadium redox flow batteries[J]. Journal of Power Sources, 2016, 327: 67-76. |
21 | ZHANG Hongzhang, ZHANG Huamin, LI Xianfeng, et al. Nanofiltration (NF) membranes: The next generation separators for all vanadium redox flow batteries (VRBs)?[J]. Energy & Environmental Science, 2011, 4(5): 1676-1679. |
68 | VIJAYAKUMAR M, LUO Qingtao, LLOYD Ralph, et al. Tuning the perfluorosulfonic acid membrane morphology for vanadium redox-flow batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(50): 34327-34334. |
69 | MA Yanjiao, LI Lv, MA Lingling, et al. Cyclodextrin templated nanoporous anion exchange membrane for vanadium flow battery application[J]. Journal of Membrane Science, 2019, 586: 98-105. |
70 | LU Wenjing, YUAN Zhizhang, LI Mingrun, et al. Solvent-induced rearrangement of ion-transport channels: A way to create advanced porous membranes for vanadium flow batteries[J]. Advanced Functional Materials, 2017, 27(4): 1604587. |
71 | JIANG Fengjing, ZHANG Yue, WANG Feiran, et al. Finely controlled swelling: A shortcut to construct ion-selective channels in polymer membranes[J]. Polymer, 2021, 225: 123793. |
72 | QIAO Lin, ZHANG Huamin, LU Wenjing, et al. Advanced porous membranes with tunable morphology regulated by ionic strength of nonsolvent for flow battery[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24107-24113. |
73 | JIA Chao, LI Lei, LIU Ying, et al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances[J]. Nature Communications, 2020, 11(1): 3732. |
74 | HERZ H G, KREUER K D, MAIER J, et al. New fully polymeric proton solvents with high proton mobility[J]. Electrochimica Acta, 2003, 48(14/15/16): 2165-2171. |
75 | WANG Jingtao, HE Yakun, ZHAO Liping, et al. Enhanced proton conductivities of nanofibrous composite membranes enabled by acid-base pairs under hydrated and anhydrous conditions[J]. Journal of Membrane Science, 2015, 482: 1-12. |
76 | SCHUSTER M, RAGER T, NODA A, et al. About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: A critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds[J]. Fuel Cells, 2005, 5(3): 355-365. |
77 | HE Zhenhua, WANG Gang, WEI Shiguo, et al. A novel fluorinated acid-base sulfonated polyimide membrane with sulfoalkyl side-chain for vanadium redox flow battery[J]. Electrochimica Acta, 2021, 399: 139434. |
78 | QIAN Penghua, WANG Haixia, ZHANG Lei, et al. An enhanced stability and efficiency of SPEEK-based composite membrane influenced by amphoteric side-chain polymer for vanadium redox flow battery[J]. Journal of Membrane Science, 2022, 643: 120011. |
79 | PANG Bo, ZHANG Qi, YAN Xiaoming, et al. Superior acidic sulfate ester group based high conductive membrane for vanadium redox flow battery[J]. Journal of Power Sources, 2021, 506: 230203. |
22 | LI Yun, ZHANG Huamin, LI Xianfeng, et al. Porous poly(ether sulfone) membranes with tunable morphology: Fabrication and their application for vanadium flow battery[J]. Journal of Power Sources, 2013, 233: 202-208. |
23 | ZHANG Hongzhang, ZHANG Huamin, ZHANG Fengxiang, et al. Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application[J]. Energy & Environmental Science, 2013, 6(3): 776-781. |
24 | XU Wanxing, LI Xianfeng, CAO Jingyu, et al. Morphology and performance of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend porous membranes for vanadium flow battery application[J]. RSC Advances, 2014, 4(76): 40400-40406. |
25 | DAI Jicui, DONG Yichao, GAO Peng, et al. A sandwiched bipolar membrane for all vanadium redox flow battery with high coulombic efficiency[J]. Polymer, 2018, 140: 233-239. |
26 | JIANG Bo, WU Lantao, YU Lihong, et al. A comparative study of Nafion series membranes for vanadium redox flow batteries[J]. Journal of Membrane Science, 2016, 510: 18-26. |
27 | XI Jingyu, WU Zenghua, QIU Xinping, et al. Nafion/SiO2 hybrid membrane for vanadium redox flow battery[J]. Journal of Power Sources, 2007, 166(2): 531-536. |
28 | ZHAO Yingying, ZHANG Denghua, ZHAO Lina, et al. Excellent ion selectivity of Nafion membrane modified by PBI via acid-base pair effect for vanadium flow battery[J]. Electrochimica Acta, 2021, 394: 139144. |
29 | CHEN Dongju, CHEN Xiaoli, DING Lifang, et al. Advanced acid-base blend ion exchange membranes with high performance for vanadium flow battery application[J]. Journal of Membrane Science, 2018, 553: 25-31. |
30 | XING Yi, GENG Kang, CHU Xiaomeng, et al. Chemically stable anion exchange membranes based on C2-protected imidazolium cations for vanadium flow battery[J]. Journal of Membrane Science, 2021, 618: 118696. |
31 | TANG Weiqin, MU Tong, CHE Xuefu, et al. Highly selective anion exchange membrane based on quaternized poly(triphenyl piperidine) for the vanadium redox flow battery[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(42): 14297-14306. |
32 | TANG Weiqin, YANG Yunfei, LIU Xinli, et al. Long side-chain quaternary ammonium group functionalized polybenzimidazole based anion exchange membranes and their applications[J]. Electrochimica Acta, 2021, 391: 138919. |
[1] | LIN Mingjie, LI Shiyang, MA Junmei, GAO Congjie, XUE Lixin. Preparation of polyamide/cellulose acetate thin-film composite forward osmosis membranes and optimization of phase inversion process parameters [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1418-1427. |
[2] | ZHAO Guoke, ZHANG Yang, LIU Yiqun. Membrane technologies for monovalent/divalent cation separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1363-1373. |
[3] | FENG Jianghan, SONG Fang. Research progress of anion exchange membrane water electrolysis cells [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3501-3509. |
[4] | YE Haixing, CHEN Yuhao, CHEN Yi, SUN Haixiang, NIU Qingshan. Research progress of composite nanofiltration membrane for magnesium and lithium separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1934-1943. |
[5] | GUO Zhipeng, BU Xianbiao, LI Huashan, GONG Yulie, WANG Lingbao. Numerical simulation of heat extraction in single-well enhanced geothermal system based on thermal-hydraulic-chemical coupling model [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 711-721. |
[6] | CAI Mingwei, WANG Zhi, LU Xiaochuang, ZHUANG Junwei, WU Jiahao, ZHANG Shiyang, MIN Yonggang. Polyimide membranes for hydrogen separation: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5232-5248. |
[7] | ZHANG Hongming, LU Jiongyuan, WANG Sanfan. Research progress on molecular structure of anion exchange membrane for fuel cells [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 318-330. |
[8] | HUANG Ming, ZU Yunqiu, GAO Kang, WEI Wei, ZHANG Na, ZHU Huaping, LIU Chuntai. VARTM simulation and high temperature mechanical properties of large tow CF/EP automobile floor [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2546-2554. |
[9] | DONG Lin, CHEN Qingbai, WANG Jianyou, LI Pengfei, WANG Jin. Research progress in brackish water electrodialysis desalination technology [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2102-2114. |
[10] | WAN Lei, XU Zi’ang, WANG Peican, XU Qin, WANG Baoguo. Progress of alkaline-resistant ion membranes for hydrogen production by water electrolysis [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1556-1568. |
[11] | ZHANG Chuanbao, WANG Yanling, CHEN Mengxin, LIANG Shinan, SHI Wenjing. Research progress on high temperature resistant guar gum fracturing fluid and its damage mechanism to reservoirs [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5912-5924. |
[12] | WANG Minjian, CHEN Siguo, SHAO Minhua, WEI Zidong. Recent advances of electrocatalysts in hydrogen fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4948-4961. |
[13] | Dongsheng ZHAO. Recent advances in metal organic frameworks mixed matrix membranes for water treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1035-1047. |
[14] | NING Mengjia, DAI Yan, XI Yuan, ZHANG Xing, LIU Hongjing, HE Gaohong. CO2 separation of Pebax-based mixed matrix membranes promoted by Cu(Qc)2 [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5652-5659. |
[15] | Fang LUO, Jing WANG, Zhikan YAO, Lin ZHANG, Huanlin CHEN. Research progress on methodology for determining forward osmosis membrane parameters [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 31-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |