Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 688-697.DOI: 10.16085/j.issn.1000-6613.2024-0244
• Chemical processes and equipment • Previous Articles Next Articles
SUN Yuepeng1(), SUN Yanji2, PAN Yanqiu1(
), WANG Chengyu1
Received:
2024-02-01
Revised:
2024-03-25
Online:
2025-03-10
Published:
2025-02-25
Contact:
PAN Yanqiu
通讯作者:
潘艳秋
作者简介:
孙悦鹏(1998—),男,硕士研究生,研究方向为化工过程建模与优化。E-mail:ypsun98@163.com。
CLC Number:
SUN Yuepeng, SUN Yanji, PAN Yanqiu, WANG Chengyu. Prediction of CO2 content in Rectisol purified gas based on BO-LSTM[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 688-697.
孙悦鹏, 孙延吉, 潘艳秋, 王成宇. 基于BO-LSTM的低温甲醇洗净化气CO2含量预测[J]. 化工进展, 2025, 44(2): 688-697.
时间 | FIA1001 /m3·h-1 | TIA1001 /℃ | PI1002 /MPa | TI1008 /℃ | … | AIA1006 /% |
---|---|---|---|---|---|---|
11/16/8:00 | 343.332 | 26.691 | 5.323 | -17.368 | … | 3.275 |
11/16/7:59 | 340.978 | 26.553 | 5.322 | -17.423 | … | 3.278 |
11/16/7:58 | 341.077 | 26.722 | 5.323 | -17.395 | … | 3.274 |
… | ||||||
10/16/8:02 | 367.376 | 27.265 | 5.365 | -17.726 | … | 3.334 |
10/16/8:01 | 368.837 | 27.490 | 5.364 | -17.561 | … | 3.327 |
10/16/8:00 | 364.665 | 27.425 | 5.364 | -17.539 | … | 3.295 |
时间 | FIA1001 /m3·h-1 | TIA1001 /℃ | PI1002 /MPa | TI1008 /℃ | … | AIA1006 /% |
---|---|---|---|---|---|---|
11/16/8:00 | 343.332 | 26.691 | 5.323 | -17.368 | … | 3.275 |
11/16/7:59 | 340.978 | 26.553 | 5.322 | -17.423 | … | 3.278 |
11/16/7:58 | 341.077 | 26.722 | 5.323 | -17.395 | … | 3.274 |
… | ||||||
10/16/8:02 | 367.376 | 27.265 | 5.365 | -17.726 | … | 3.334 |
10/16/8:01 | 368.837 | 27.490 | 5.364 | -17.561 | … | 3.327 |
10/16/8:00 | 364.665 | 27.425 | 5.364 | -17.539 | … | 3.295 |
变量序号 | MIC数值 |
---|---|
1 | 0.1776 |
2 | 0.1965 |
3 | 0.1575 |
4 | 0.2387 |
5 | 0.2136 |
71 | 0.1831 |
变量序号 | MIC数值 |
---|---|
1 | 0.1776 |
2 | 0.1965 |
3 | 0.1575 |
4 | 0.2387 |
5 | 0.2136 |
71 | 0.1831 |
序号 | 位号 | 含义 |
---|---|---|
1 | PI1002 | 原料气压力 |
2 | TI1003 | 原料气进入水分离器温度 |
3 | TI1072 | 尾气洗涤塔塔顶出口物料温度 |
4 | TIA1099 | 尾气洗涤塔塔底进料温度 |
5 | FICA1005 | 甲醇洗涤塔中段回流流量 |
6 | TI1010 | 甲醇洗涤塔中段回流温度 |
7 | TI1013 | H2S浓缩塔中段物料压缩后温度 |
8 | TIA1006 | 甲醇洗涤塔塔顶出口物料温度 |
9 | TIA1015 | 甲醇洗涤塔塔顶甲醇进料温度 |
10 | FICA1051 | CO2产品塔塔顶溶液进料流量 |
11 | TI1033 | 循环甲醇中段换热器出口温度 |
12 | TI1036 | H2S浓缩塔塔底换热器出口温度 |
13 | TI1037 | 贫甲醇泵出口换热器温度 |
14 | TI1041 | CO2汽提塔塔顶出口物料温度 |
15 | TI1094 | H2S浓缩塔塔顶富甲醇进料温度 |
16 | TIA1031 | H2S浓缩塔中段物料采出温度 |
17 | TIA1076 | 贫甲醇泵进料温度 |
18 | TIA1106 | CO2产品塔塔顶出口物料温度 |
19 | FIA1038 | 克劳斯气流量 |
20 | TIA1051 | 热再生塔底再沸器回流温度 |
21 | TIA1059 | 克劳斯气温度 |
序号 | 位号 | 含义 |
---|---|---|
1 | PI1002 | 原料气压力 |
2 | TI1003 | 原料气进入水分离器温度 |
3 | TI1072 | 尾气洗涤塔塔顶出口物料温度 |
4 | TIA1099 | 尾气洗涤塔塔底进料温度 |
5 | FICA1005 | 甲醇洗涤塔中段回流流量 |
6 | TI1010 | 甲醇洗涤塔中段回流温度 |
7 | TI1013 | H2S浓缩塔中段物料压缩后温度 |
8 | TIA1006 | 甲醇洗涤塔塔顶出口物料温度 |
9 | TIA1015 | 甲醇洗涤塔塔顶甲醇进料温度 |
10 | FICA1051 | CO2产品塔塔顶溶液进料流量 |
11 | TI1033 | 循环甲醇中段换热器出口温度 |
12 | TI1036 | H2S浓缩塔塔底换热器出口温度 |
13 | TI1037 | 贫甲醇泵出口换热器温度 |
14 | TI1041 | CO2汽提塔塔顶出口物料温度 |
15 | TI1094 | H2S浓缩塔塔顶富甲醇进料温度 |
16 | TIA1031 | H2S浓缩塔中段物料采出温度 |
17 | TIA1076 | 贫甲醇泵进料温度 |
18 | TIA1106 | CO2产品塔塔顶出口物料温度 |
19 | FIA1038 | 克劳斯气流量 |
20 | TIA1051 | 热再生塔底再沸器回流温度 |
21 | TIA1059 | 克劳斯气温度 |
超参数 | 取值范围 | 优化结果 |
---|---|---|
LSTM层1神经元个数 | [40,100] | 84 |
LSTM层2神经元个数 | [ | 21 |
Dropout层1丢弃概率 | [0.1,0.5] | 0.4262 |
Dropout层2丢弃概率 | [0.1,0.5] | 0.1520 |
初始学习率 | [0.001,0.1] | 0.0564 |
批次大小 | [ | 38 |
超参数 | 取值范围 | 优化结果 |
---|---|---|
LSTM层1神经元个数 | [40,100] | 84 |
LSTM层2神经元个数 | [ | 21 |
Dropout层1丢弃概率 | [0.1,0.5] | 0.4262 |
Dropout层2丢弃概率 | [0.1,0.5] | 0.1520 |
初始学习率 | [0.001,0.1] | 0.0564 |
批次大小 | [ | 38 |
超参数 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 |
---|---|---|---|---|---|
LSTM层1神经元个数 | 54 | 68 | 97 | 92 | 74 |
LSTM层2神经元个数 | 46 | 39 | 20 | 18 | 53 |
Dropout层1丢弃概率 | 0.1043 | 0.4660 | 0.1222 | 0.3935 | 0.4971 |
Dropout层2丢弃概率 | 0.1279 | 0.4137 | 0.2510 | 0.2021 | 0.3734 |
初始学习率 | 0.0013 | 0.0195 | 0.0208 | 0.0596 | 0.0846 |
批次大小 | 25 | 11 | 14 | 27 | 49 |
超参数 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 |
---|---|---|---|---|---|
LSTM层1神经元个数 | 54 | 68 | 97 | 92 | 74 |
LSTM层2神经元个数 | 46 | 39 | 20 | 18 | 53 |
Dropout层1丢弃概率 | 0.1043 | 0.4660 | 0.1222 | 0.3935 | 0.4971 |
Dropout层2丢弃概率 | 0.1279 | 0.4137 | 0.2510 | 0.2021 | 0.3734 |
初始学习率 | 0.0013 | 0.0195 | 0.0208 | 0.0596 | 0.0846 |
批次大小 | 25 | 11 | 14 | 27 | 49 |
1 | GATTI Manuele, MARTELLI Emanuele, MARECHAL François, et al. Review, modeling, Heat Integration, and improved schemes of Rectisol®-based processes for CO2 capture[J]. Applied Thermal Engineering, 2014, 70(2): 1123-1140. |
2 | 马震伟. 低温甲醇洗技术及其在煤化工中的应用探讨[J]. 中国石油和化工标准与质量, 2023, 43(17): 145-147. |
MA Zhenwei. Discussion on low temperature methanol washing technology and its application in coal chemical industry[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(17): 145-147. | |
3 | 王克华, 管凤宝, 夏祖虎, 等. 煤制氢低温甲醇洗装置改造方案研究[J]. 现代化工, 2023, 43(11): 231-235. |
WANG Kehua, GUAN Fengbao, XIA Zuhu, et al. Research on upgrading scheme for rectisol unit in a coal to hydrogen plant[J]. Modern Chemical Industry, 2023, 43(11): 231-235. | |
4 | 李希龙. 低温甲醇洗H2S和CO2吸收塔流程模拟与优化[J]. 石油石化绿色低碳, 2023, 8(1): 63-69. |
LI Xilong. Process simulation and optimization of rectisol H2S and CO2 absorption towers[J]. Green Petroleum & Petrochemicals, 2023, 8(1): 63-69. | |
5 | 张陆, 杨声. 低温甲醇洗碳捕集改进与优化[J]. 化工进展, 2022, 41(11): 6167-6175. |
ZHANG Lu, YANG Sheng. Improvement and optimization of carbon capture via Rectisol[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6167-6175. | |
6 | FENG Yixiong, ZHAO Yuliang, ZHENG Hao, et al. Data-driven product design toward intelligent manufacturing: A review[J]. International Journal of Advanced Robotic Systems, 2020, 17(2): 172988142091125. |
7 | OLMEZ Elif, EGRIOGLU Erol, Eren BAS. Bootstrapped dendritic neuron model artificial neural network for forecasting[J]. Granular Computing, 2023, 8(6): 1689-1699. |
8 | LI Weiwei, SONG Yuncai. Artificial neural network model of catalytic coal gasification in fixed bed[J]. Journal of the Energy Institute, 2022, 105: 176-183. |
9 | 丛迪. 乙烯生产过程能效分析与优化方法研究[D]. 北京: 北京化工大学, 2022. |
CONG Di. Research on energy efficiency analysis and optimization method for ethylene production process[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
10 | 杨宇轩, 潘欣, 鄢烈祥, 等. 基于BP神经网络和列队竞争算法的低温甲醇洗过程参数优化[J]. 计算机与应用化学, 2013, 30(12): 1439-1443. |
YANG Yuxuan, PAN Xin, YAN Liexiang, et al. Parameters optimization in rectisol wash process based on BP neural network and line-up competition algorithm[J]. Computers and Applied Chemistry, 2013, 30(12): 1439-1443. | |
11 | 李英泽. 基于数据分析与流程模拟的低温甲醇洗操作优化[D]. 广州: 华南理工大学, 2021. |
LI Yingze. Operation optimization of the rectisol based on data analysis and process simulation [D]. Guangzhou: South China University of Technology, 2021. | |
12 | 李勇, 赵宇明. 基于贝叶斯优化算法和长短期记忆网络的PM2.5浓度预测[J]. 流体测量与控制, 2023, 4(6): 14-17, 21. |
LI Yong, ZHAO Yuming. PM2.5 concentration prediction based on Bayesian optimization algorithm and LSTM[J]. Fluid Measurement & Control, 2023, 4(6): 14-17, 21. | |
13 | 邱凯旋, 李佳. 基于贝叶斯优化和长短期记忆神经网络(BO-LSTM)的短期电力负荷预测[J]. 电力学报, 2022, 37(5): 367-373. |
QIU Kaixuan, LI Jia. Short-term power load forecasting based on Bayes optimization and long and short-term memory neural network(BO-LSTM)[J]. Journal of Electric Power, 2022, 37(5): 367-373. | |
14 | WU Jia, LIU Xiyuan, CHEN Senpeng. Hyperparameter optimization through context-based meta-reinforcement learning with task-aware representation[J]. Knowledge-Based Systems, 2023, 260: 110160. |
15 | STIEGEL Gary J, MAXWELL Russell C. Gasification technologies: The path to clean, affordable energy in the 21st century[J]. Fuel Processing Technology, 2001, 71(1/2/3): 79-97. |
16 | 李鹏飞. 连续重整装置的数据驱动建模和重点单元优化[D]. 大连: 大连理工大学, 2022. |
LI Pengfei. Data-driven modeling and key unit optimization of continuous reformer[D]. Dalian: Dalian University of Technology, 2022. | |
17 | 顾俊发, 许明阳, 马方圆, 等. 基于MIC的支持向量回归及其在化工过程中的应用[J]. 化工学报, 2021, 72(3): 1480-1486. |
GU Junfa, XU Mingyang, MA Fangyuan, et al. Support vector regression based on maximal information coefficient and its application in chemical industrial processes[J]. CIESC Journal, 2021, 72(3): 1480-1486. | |
18 | 高晓红, 李兴奇. 多元线性回归模型中无量纲化方法比较[J]. 统计与决策, 2022, 38(6): 5-9. |
GAO Xiaohong, LI Xingqi. Comparison of dimensionless methods in multiple linear regression models[J]. Statistics & Decision, 2022, 38(6): 5-9. | |
19 | LIU Chuanlu, WANG Shuliang, YUAN Hanning, et al. Detecting unbiased associations in large data sets[J]. Big Data, 2022, 10(4): 337-355. |
20 | 周家伟. 基于MIC-LSTM的水体连续缺失数据插补[J]. 长江信息通信, 2023, 36(3): 58-61. |
ZHOU Jiawei. Interpolation of water successive missing data based on MIC-LSTM[J]. Changjiang Information & Communications, 2023, 36(3): 58-61. | |
21 | 柳守诚, 王淳, 邹智辉, 等. 基于知识驱动及数据相关性的低压配电网户变关系识别[J]. 南昌大学学报(工科版), 2023, 45(4): 392-398. |
LIU Shoucheng, WANG Chun, ZOU Zhihui, et al. Identification of household transformer relationship in low voltage distribution network based on knowledge driven and data correlation[J]. Journal of Nanchang University(Engineering & Technology), 2023, 45(4): 392-398. | |
22 | 潘艳秋, 李鹏飞, 高石磊, 等. 基于MIC筛选规则和BP神经网络的变换装置建模及产品预测[J]. 化工进展, 2022, 41(S1): 36-43. |
PAN Yanqiu, LI Pengfei, GAO Shilei, et al. Application of BP neural network based on MIC screening rules in modeling and product prediction of shift unit[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 36-43. | |
23 | PAN Shiyuan, LIAO Qi, LIANG Yongtu. Multivariable sales prediction for filling stations via GA improved BiLSTM[J]. Petroleum Science, 2022, 19(5): 2483-2496. |
24 | 张宜祥, 张玲华. 基于超参数优化的电力负荷预测模型研究[J]. 电子设计工程, 2024, 32(4): 37-42. |
ZHANG Yixiang, ZHANG Linghua. Research on power load forecasting model based on optimization of hyper-parameter[J]. Electronic Design Engineering, 2024, 32(4): 37-42. | |
25 | LI Yucen Lily, RUDNER Tim G J, WILSON Andrew Gordon. A study of Bayesian neural network surrogates for Bayesian optimization[EB/OL]. 2023: 2305.20028. . |
26 | 刘行, 王秋晨, 文韵豪, 等. 基于BO-LSTM的天然气处理厂负荷率预测模型[J]. 天然气与石油, 2023, 41(5): 122-130. |
LIU Xing, WANG Qiuchen, WEN Yunhao, et al. Forecasting model for load rate of natural gas treatment plant based on BO-LSTM model[J]. Natural Gas and Oil, 2023, 41(5): 122-130. | |
27 | 王樱达, 丁泽, 王延瓒, 等. 基于贝叶斯优化Bi-LSTM的刀具磨损状态监测模型[J]. 工具技术, 2023, 57(6): 133-137. |
WANG Yingda, DING Ze, WANG Yanzan, et al. Tool wear detection based on Bayesian optimized Bi-LSTM[J]. Tool Engineering, 2023, 57(6): 133-137. | |
28 | 刘智, 李欣雨, 李震, 等. 基于Bayes-LSTM的公路隧道围岩变形预测方法研究[J]. 中外公路, 2024, 44(1): 166-176. |
LIU Zhi, LI Xinyu, LI Zhen, et al. Prediction method of surrounding rock deformation of highway tunnels based on Bayes-LSTM[J]. Journal of China & Foreign Highway, 2024, 44(1): 166-176. | |
29 | 雷萌, 吕游, 魏玮, 等. 基于LSTM神经网络与贝叶斯优化的电站风机故障预警[J]. 热能动力工程, 2022, 37(8): 213-220. |
LEI Meng, You LYU, WEI Wei, et al. Fault warning of power plant fans based on long short-term memory neural network and Bayesian optimization[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(8): 213-220. |
[1] | ZHANG Qian, LIU Xin, WANG Bing, XU Jing, CAO Chenxi. Quantitative analysis of domino effects in large tank farms under various wind conditions and accident scenarios [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1170-1182. |
[2] | SUN Jian, ZHANG Haiyong, WANG Chengxiu, SUN Zeneng, LAN Xingying, GAO Jinsen, ZHU Jingxu. Cluster characteristics in gas-solids circulating fluidized bed based on k-means algorithm-assisted imaging method [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 625-634. |
[3] | PAN Jiabao, LI Yiliang, WANG Jin. Analysis and prediction of the behavior of the thermal effects of magnetorheological grease [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 415-423. |
[4] | DAI Zhengshu, ZUO Yuanhao, CHEN Xiaoluo, ZHANG Li, ZHAO Gen, ZHANG Xuejun, ZHANG Hua. Process in the application of machine learning in ejector research [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 1-12. |
[5] | ZOU Zhiyun, YU Meng, LIU Yingli. Prediction of operating conditions of batch distillation process based on LSTM and BP neural networks [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 21-31. |
[6] | CHEN Wangmi, XI Beidou, LI Mingxiao, YE Meiying, HOU Jiaqi, YU Chengze, WEI Yufang, MENG Fanhua. Research progress on carbon emission reduction technology for pyrolysis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 479-503. |
[7] | LI Yimeng, CHEN Yunquan, HE Chang, ZHANG Bingjian, CHEN Qinglin. Forward and reverse problems of methane dehydro-aromatization based on physics-informed neural network [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4817-4823. |
[8] | ZHANG Jiaxin, ZHANG Miao, DAI Yiyang, DONG Lichun. Design and application of enhanced deep convolutional neural networks model for fault diagnosis in practical chemical processes [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4833-4844. |
[9] | WANG Yanan, LIU Linlin, ZHUANG Yu, DU Jian. Synchronous optimization and heat integration of the production process from EO to EG based on surrogate model [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5234-5241. |
[10] | DING Lu, WANG Peiyao, KONG Lingxue, BAI Jin, YU Guangsuo, LI Wen, WANG Fuchen. Progress on reaction models for coal gasification processes [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3593-3612. |
[11] | LI Kai, WEI Helin, YIN Zhifan, ZUO Xiahua, YU Xiaoyu, YIN Hongyuan, YANG Weimin, YAN Hua, AN Ying. Prediction of thermal conductivity and viscosity of water-based carbon black nanofluids based on GA-BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4138-4147. |
[12] | ZHENG Suoqi, ZHAN Lingxiao, CHEN Heng, LI Zhihao, WANG Yurui, ZHAO Ning, WU Hao, YANG Linjun. Hybrid modeling for energy consumption prediction of desulfurization wastewater bypass evaporation system [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2968-2976. |
[13] | ZHANG Zhen, ZHANG Fan, YUN Zhiting. Carbon reduction and techno-economic analysis of using green hydrogen in chemical and petrochemical industry [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3021-3028. |
[14] | WU Qi, BAI Boyang, YIN Yongjie, MA Xiaoxun. Relationship between the structure of macerals of Ordos lignite and its pyrolysis characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2370-2385. |
[15] | LI Xinze, ZOU Weijie, SUN Chen, FU Xuan, CHEN Qian, YUAN Liang, WANG Zicheng, XING Xiaokai, XIONG Xiaoqin, GUO Lianghui. Prediction of safe shutdown time of a supercritical CO2 pipeline in Xinjiang oilfield [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2823-2833. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 9
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 32
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |