1 |
ASHTIANI M, HASHEMABADI S H, GHAFFARI A. A review on the magnetorheological fluid preparation and stabilization[J]. Journal of Magnetism and Magnetic Materials, 2015, 374: 716-730.
|
2 |
DE VICENTE Juan, KLINGENBERG Daniel J, Roque HIDALGO-ALVAREZ. Magnetorheological fluids: A review[J]. Soft Matter, 2011, 7(8): 3701-3710.
|
3 |
Seval GENÇ, PHULÉ Pradeep P. Rheological properties of magnetorheological fluids[J]. Smart Materials and Structures, 2002, 11(1): 140-146.
|
4 |
AASHNA Raj, CHIRANJIT Sarkar, PIYUSH Kumar, et al. Investigation of magnetorheological grease flow under the influence of a magnetic field[J]. Journal of Molecular Liquids, 2022, 361: 119682.
|
5 |
KAVLICOGLU Barkan M, GORDANINEJAD Faramarz, WANG Xiaojie. Study of a magnetorheological grease clutch[J]. Smart Material Structures, 2013, 22(12): 125030.
|
6 |
WANG Wenchao, ZHANG Guang, WANG Huixing, et al. Influence of kinematic viscosity of base oil on magnetorheological grease[J]. Journal of Shanghai Jiaotong University (Science), 2023, 28(5): 676-685.
|
7 |
YE Xudan, WANG Jiong, WANG Huixing, et al. An experimental study on thermo-field rheological properties of lithium-based magnetorheological grease[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129047.
|
8 |
DAI Jun, CHANG Hui, ZHAO Rui, et al. Investigation of the relationship among the microstructure, rheological properties of MR grease and the speed reduction performance of a rotary micro-brake[J]. Mechanical Systems and Signal Processing, 2019, 116: 741-750.
|
9 |
DONG Jiqiang, YE Xudan, Zhen LYU, et al. Temperature effects and a prediction method of field-dependent yield stress in graphite magnetorheological grease[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 673: 131850.
|
10 |
胡志德, 晏华, 王雪梅, 等. 羰基铁粉对磁流变脂皂化和成纤结构的影响[J]. 功能材料, 2014, 45(21): 21045-21049.
|
|
HU Zhide, YAN Hua, WANG Xuemei, et al. The effect of carbonyl iron on the saponification and structure of magnetorheological grease[J]. Journal of Functional Materials, 2014, 45(21): 21045-21049.
|
11 |
胡志德, 晏华, 王雪梅, 等. 冷却条件对磁流变脂微观结构及动态流变行为的影响[J]. 功能材料, 2014, 45(24): 24082-24086.
|
|
HU Zhide, YAN Hua, WANG Xuemei, et al. The effect of cooling profile on the microstructure and rheology of mineral oil-based magnetorheological grease[J]. Journal of Functional Materials, 2014, 45(24): 24082-24086.
|
12 |
沈铁军, 胡明华, 刘瑞刚, 等. 静态热老化对锂-钙基润滑脂微观结构和流变性的影响[J]. 摩擦学学报, 2011, 31(6): 581-586.
|
|
SHEN Tiejun, HU Minghua, LIU Ruigang, et al. The influence of static thermal degradation on microstructure and rheological properties of lithium-calcium base grease[J]. Tribology, 2011, 31(6): 581-586.
|
13 |
胡金涛, 张安生, 张恩惠, 等. 高温热效应对复合锂基润滑脂性能影响规律研究[J]. 摩擦学学报, 2021, 41(4): 447-454.
|
|
HU Jintao, ZHANG Ansheng, ZHANG Enhui, et al. Influence of high temperature thermal effect on the properties of complex lithium grease[J]. Tribology, 2021, 41(4): 447-454.
|
14 |
潘家保, 钱明, 周彬, 等. 连续与间断热作用对复合锂基润滑脂流变特性的影响[J]. 石油学报(石油加工), 2018, 34(3): 552-560.
|
|
PAN Jiabao, QIAN Ming, ZHOU Bin, et al. Effects of continuous and intermittent heat treatment on rheological behaviors of lithium complex grease[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(3): 552-560.
|
15 |
SAHARUDDIN K D, M H Mohammed ARIFF, BAHIUDDIN I, et al. Constitutive models for predicting field-dependent viscoelastic behavior of magnetorheological elastomer using machine learning[J]. Smart Materials and Structures, 2020, 29: 087001.
|
16 |
Jingcheng LYU, WU Mingyu, ZHAO Tong, et al. Accurate prediction of magnetorheological damper characteristics based on a new rheological constitutive model[J]. Structures, 2023, 50: 108-117.
|
17 |
BAHIUDDIN Irfan, WAHAB Nurul A A, SHAPIAI Mohd I, et al. Prediction of field-dependent rheological properties of magnetorheological grease using extreme learning machine method[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(11): 1727-1742.
|
18 |
BAHIUDDIN Irfan, MAZLAN Saiful Amri, SHAPIAI Mohd Ibrahim, et al. A new platform for the prediction of field-dependent yield stress and plastic viscosity of magnetorheological fluids using particle swarm optimization[J]. Applied Soft Computing, 2019, 76(C): 615-628.
|
19 |
MOHAMAD N, MAZLAN S A, Ubaidillah, et al. The field-dependent rheological properties of magnetorheological grease based on carbonyl-iron-particles[J]. Smart Material Structures, 2016, 25(9): 095043.
|
20 |
汪辉兴, 张广, 欧阳青, 等. 磁流变脂在剪切模式下的流变特性[J]. 上海交通大学学报, 2019, 53(3): 380-386.
|
|
WANG Huixing, ZHANG Guang, OUYANG Qing, et al. Rheological properties of magnetorheological grease under shear mode[J]. Journal of Shanghai Jiao Tong University, 2019, 53(3): 380-386.
|
21 |
KIM Ji-Eun, Jae-Do KO, LIU Yingdan, et al. Effect of medium oil on magnetorheology of soft carbonyl iron particles[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3442-3445.
|
22 |
MOHAMAD Norzilawati, Ubaidillah, MAZLAN Saiful Amri, et al. The effect of particle shapes on the field-dependent rheological properties of magnetorheological greases[J]. International Journal of Molecular Sciences, 2019, 20(7): 1525.
|
23 |
HU Hsiu-Yuan, LEE Yucheng, YEN Tieh-Min, et al. Using BPNN and DEMATEL to modify importance-performance analysis model — A study of the computer industry[J]. Expert Systems with Applications, 2009, 36(6): 9969-9979.
|
24 |
AZADI MOGHADDAM M, GOLMEZERGI R, KOLAHAN F. Multi-variable measurements and optimization of GMAW parameters for API-X42 steel alloy using a hybrid BPNN-PSO approach[J]. Measurement, 2016, 92: 279-287.
|
25 |
WU Yuan, YUAN Xiaoping. On the Kolmogorov theorem for some infinite-dimensional Hamiltonian systems of short range[J]. Nonlinear Analysis, 2021, 202: 112120.
|
26 |
XUE Jiankai, SHEN Bo. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
|
27 |
GHAREHCHOPOGH Farhad Soleimanian, NAMAZI Mohammad, EBRAHIMI Laya, et al. Advances in sparrow search algorithm: A comprehensive survey[J]. Archives of Computational Methods in Engineering, 2023, 30(1): 427-455.
|
28 |
GEDIK Engin, Hüseyin KURT, PALA Murat, et al. An experimental and artificial neural network investigation on the laminar flow of magnetorheological fluids through circular pipes[J]. Journal of Magnetism and Magnetic Materials, 2022, 546: 168893.
|
29 |
GONG Wei, TAN Ping, XIONG Shishu, et al. Experimental and numerical study of the forward and inverse models of an MR gel damper using a GA-optimized neural network[J]. Journal of Intelligent Material Systems and Structures, 2023, 34(18): 2172-2191.
|