[1] ULLMANN A, BRAUNER N. Closure relations for two-fluid models for two-phase stratified smooth and stratified wavy flows[J]. International Journal of Multiphase Flow, 2006, 32(1): 82-105. [2] 郭烈锦. 两相与多相流动力学[M]. 西安: 西安交通大学出版社, 2002. [3] MOUZA A A, PARAS S V, KARABELAS A J. CFD code application to wavy stratified gas-liquid flow[J]. Chemical Engineering Research and Design, 2001, 79(5): 561-568. [4] LINÉ A, LOPEZ D. Two-fluid model of wavy separated two-phase flow[J]. International Journal of Multiphase Flow, 1997, 23(6): 1131-1146. [5] LOCKHART R W, MARTINELLI R C. Proposed correlation of data for isothermal two phase, two component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1): 38-48 [6] TAITEL Y, DUKLER A E. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J]. AIChE Journal, 1976, 22(1): 47-55. [7] TAITEL Y, DUKLER A E. A theoretical approach to the Lockhart-Martinelli correlation for stratified flow[J]. International Journal of Multiphase Flow, 1976, 2(4): 591-595. [8] SHOHAM O, TAITEL Y. Stratified turbulent-turbulent gas-liquid flow in horizontal and inclined pipes[J]. AlChE Journal, 1984, 303(3): 377-385. [9] HANSEN E A, VESTED H J. Liquid hold-up, pressure drop, and velocity profiles in steady uniform stratified flow[J]. Journal of Energy Resources Technology, 1991, 113(2): 87-93. [10] Ullmann A, Zamir M, Gat S, et al. Multi-holdups in co-current stratified flow in inclined tubes[J]. International Journal of Multiphase Flow, 2003, 29(10): 1565-1581. [11] Ullmann A, Goldstein A, Zamir M, et al. Closure relations for the shear stresses in two-fluid models for laminar stratified flow[J]. International Journal of Multiphase Flow, 2004, 30(7/8): 877-900. [12] Kang H C, Kim M H. The relation between the interfacial shear stress and the wave motion in a stratified flow[J]. International Journal of Multiphase Flow, 1993, 19(1): 35- 49. [13] 刘夷平, 王茹金, 陈超, 等.气液两相分层流剪切应力的不确定度分析[J]. 实验流体力学, 2012, 26(4): 43-47. [14] Andritsos N, Hanratty T J. Influence of interfacial waves in stratified gas-liquid flows[J]. International Journal of Multiphase Flow, 1987, 13(5): 583-603. [15] Hart J, Hamersma P J, Fortuin J M H. Correlations predicting frictional pressure drop and liquid holdup during horizontal gas-liquid pipe flow with a small liquid holdup[J]. International Journal of Multiphase Flow, 1989, 15(6): 947-964. [16] Chen X T, Cai X D, Brill J P. Gas-liquid stratified-wavy flow in horizontal pipelines[J]. Journal of Energy Resources Technology, 1997, 119: 209-216. [17] Vlachos N A, Paras S V, Karabelas A J. Prediction of holdup, axial pressure gradient and wall shear stress in wavy stratified and stratified/atomization gas/liquid flow[J]. International Journal of Multiphase Flow, 1999, 25(2): 365-376. [18] Vlachos N A. Studies of stratified/atomization two-phase flow in a horizontal pipe[D]. Thessaloniki: Aristotle University of Thessaloniki, 1997 [19] Ng T S, Lawrence C J, Hewitt G F. Interface shapes for two-phase laminar stratified flow in a circular pipe[J]. International Journal of Multiphase Flow, 2000, 27(7): 1301-1311. [20] Brauner N, Rovinsky J, Moalem M D. Determination of the interface curvature in stratified two-phase systems by energy considerations[J]. International Journal of Multiphase Flow, 1996, 22(6): 1167-1185. [21] Brauner N, Rovinsky J, Moalem M D. Analytical solution for Laminar-Laminar two-phase flow in circular conduits[J]. Chemical Engineering Communication, 1996, 141/142(1): 103-143. [22] Brauner N, Rovinsky J, Moalem M D. Analytical solution of laminar stratified flow with curved interfaces[C]// Proceedings of the NURETH-7 Meeting, ANS 1, 1995: 192-211. [23] Brauner N, Rovinsky J, Moalem M D. Characteristics of annular and stratified two-phase flow in the limit of fully eccentric core annular configuration[C]// Proc. of the ExHFT 4, Brussels, 1997. [24] Brauner N, Moalem M D, Rovinsky J. A two-fluid model for stratified flows with curved interfaces[J]. International Journal of Multiphase Flow, 1998, 24(6): 975-1004. [25] ROVINSKY J, BRAUNER N, MOALEM M D. Analytical solution for laminar two-phase flow in a fully eccentric core-annular configuration[J]. International Journal of Multiphase Flow, 1997, 23(3): 523-543. [26] SOLEIMANI A. Phase distribution and associated phenomena in oil-water flows in horizontal tubes[D]. London: Imperial College, University of London, 1999. [27] BIRVALSKI M, TUMMERS M J, DELFOS R, et al. PIV measurements of waves and turbulence in stratified horizontal two-phase pipe flow[J]. International Journal of Multiphase Flow, 2014, 62: 161-173. [28] FULLMER W D, RANSOM V H, LOPEZ de Bertodano M A. Linear and nonlinear analysis of an unstable, but well-posed, one-dimensional two-fluid model for two-phase flow based on the inviscid Kelvin-Helmholtz instability[J]. Nuclear Engineering and Design, 2014, 268: 173-184. [29] LIU G, WANG Y S, ZANG G J, et al. Viscous Kelvin- Helmholtz instability analysis of liquid-vapor two-phase stratified flow for condensation in horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2015, 84: 592-599. [30] KOWALSKI J E. Wall and interfacial shear stress in stratified flow in a horizontal pipe[J]. AIChE Journal, 1987, 32(2): 274-281. [31] HAGIWARA Y, ESMAEILZADEH E, TSUTSUI H, et al. Simultaneous measurements of liquid film thickness, wall shear stress and gas flow turbulence of horizontal wavy two-phase flow [J]. International Journal of Multiphase Flow, 1989, 15(3): 421- 431. [32] TZOTZI C, ANDRITSOS N. Interfacial shear stress in wavy stratifed gas-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow, 2013, 54: 43-54. [33] STRAND Ø. An experimental investigation of stratified two-phase flow in horizontal pipes[D]. Oslo: University of Oslo, 1993. [34] HAALAND S E. Simple and explicit formulas for the friction factor in turbulent pipe flow[J]. Journal of Fluids Engineering, 1983, 105: 89-90. [35] LI W D, SUN K X, ZHOU F D. Interfacial shear stress of stratified flow in a horizontal pipe[J]. Chinese Journal of Chemical Engineering, 1999, 7(3): 263-270. [36] SIDI-ALI K, GATIGNOL R. Interfacial friction factor determination using CFD simulations in a horizontal stratified two-phase flow[J]. Chemical Engineering Science, 2010, 65(18): 5160- 5169. [37] DOMINIQUE B. The difficult challenge of a two-phase CFD modelling for all flow regimes[J]. Nuclear Engineering and Design, 2014, 279: 116-125. [38] AKAI M, INOUE A, AOKI S. The prediction of stratified two-phase flow with a two equation model of turbulence[J]. International Journal of Multiphase Flow, 1981, 7(1): 21-39. [39] ISSA R I. Prediction of turbulent, stratified, two-phase flow in inclined pipes and channels[J]. International Journal of Multiphase Flow, 1988, 14(2): 141-154. [40] MEKNASSI F, BENKIRANE R, LINÉ A, et al. Numerical modelling of wavy stratified two-phase flow in pipes[J]. Chemical Engineering Science, 2000, 55(20): 4681-4697. [41] LOPEZ D. Ecoulements diphasiques a phases separees a faible contenu de liquide[D]. France: I.N.P. Toulouse, 1994. [42] NEWTON C H, BEHNIA M. On the use of the stratified momentum balance for the deduction of shear stress in horizontal gas-liquid pipe flow[J]. International Journal of Multiphase Flow, 1998, 24(8): 1407-1423. [43] NEWTON C H, BEHNIA M. Numerical calculation of turbulent stratified-gas-liquid pipe flows[J]. International Journal of Multiphase Flow, 2000, 26(2): 327-337. [44] NEWTON C H, BEHNIA M. A numerical model of stratified-wavy gas-liquid pipe flow[J].Chemical Engineering Science, 2001, 56(24): 6851-6861. [45] VLACHOS N A, PARAS S V, KARABELAS A J. Liquid-to-wall shear stress distribution in stratified/atomization flow[J]. International Journal of Multiphase Flow, 1997, 23(5): 845-863. [46] BERTHELSEN P A, YTREHUS T. Calculations of stratified wavy two-phase flow in pipes[J]. International Journal of Multiphase Flow, 2005, 31(5): 571-592. [47] Berthelsen P A, Ytrehus T. Stratified smooth two-phase flow using the immersed interface method[J]. Computers & Fluids, 2007, 36(7): 1273-1289. [48] Ghorai S, Nigam K D P. CFD modelling of flow profiles and interfacial phenomena in two-phase flow in pipes[J]. Chemical Engineering and Processing, 2006, 45(1): 55-65. [49] de Sampaio P A B, Faccini J L H, Su Jian. Modelling of stratified gas-liquid two-phase flow in horizontal circular pipes[J]. International Journal of Heat and Mass Transfer, 2008, 51: 2752-2761. [50] Hand N P. Gas-liquid co-current flow in a horizontal pipeline[D]. Belfast: The Queen's University of Belfast, 1991. [51] Srichai S. High pressure separated two-phase flow[D]. London: Imperial College, 1994. [52] Barnea D, Taitel Y. Structural and interfacial stability of multiple solutions for stratified flow[J]. International Journal of Multiphase Flow, 1992, 18(6): 821-830. [53] Newton C H, Behnia M. On the use of the stratified momentum balance for the deduction of shear stress in horizontal gas-liquid pipe flow[J]. International Journal of Multiphase Flow, 1998, 24(8): 1407-1423. [54] Eck B. Technische Stromunglehre[M]. New York: Springer, 1973. [55] Crowley C J, Wallis G B, Barry J J. Validation of a one-dimensional wave model for the stratified-to-slug flow regime transition, with consequences for wave growth and slug frequency[J]. International Journal of Multiphase Flow, 1992, 18(2): 249-271. [56] Andritsos N. Statistical analysis of waves in horizontal stratified gas-liquid flow[J]. International Journal of Multiphase Flow, 1992, 18(3): 465-473. [57] Ayati A J, Kolaas A, Jensen G W, et al. A PIV investigation of stratified gas-liquid flow in a horizontal pipe[J]. International Journal of Multiphase Flow, 2014, 61: 129- 143. |