Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 4817-4823.DOI: 10.16085/j.issn.1000-6613.2023-1392

• Chemical processes and equipment • Previous Articles    

Forward and reverse problems of methane dehydro-aromatization based on physics-informed neural network

LI Yimeng1(), CHEN Yunquan1, HE Chang2,3(), ZHANG Bingjian1,3, CHEN Qinglin1,3   

  1. 1.School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
    2.School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
    3.Guangdong Engineering Center for Petrochemical Energy Conservation, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
  • Received:2023-08-11 Revised:2023-10-02 Online:2024-09-30 Published:2024-09-15
  • Contact: HE Chang

基于物理信息神经网络的甲烷无氧芳构化反应的正反问题

李依梦1(), 陈运全1, 何畅2,3(), 张冰剑1,3, 陈清林1,3   

  1. 1.中山大学材料科学与工程学院,广东 广州 510006
    2.中山大学化学工程与技术学院,广东 珠海 519082
    3.广东省石化过程节能工程技术研究中心,广东 广州 510006
  • 通讯作者: 何畅
  • 作者简介:李依梦(1999—),女,硕士研究生,研究方向为过程系统工程。E-mail:liym256@mail2.sysu.edu.cn
  • 基金资助:
    广东省自然科学基金(2022A1515010479);国家自然科学基金(22078373)

Abstract:

Research on solving the forward and reverse problems of chemical reaction kinetics modeling can help to gain a deeper understanding of reaction mechanisms and reduce experimental costs. This study took the one-dimensional packed bed methane dehydro-aromatization (MDA) as an example and used a physics-informed neural network to couple the chemical reaction mechanism equations into the loss function. In this way, a solution framework for reaction kinetics modeling and parameter inversion was constructed. Firstly, the optimal neural network hyperparameters were determined by solving the forward problem. The results showed that the constructed model had good predictive performance in solving the MDA reaction kinetics model, with training error and extrapolation error L2 of 0.19% and 0.95%, respectively. Based on this, the rate constants of MDA were inverted using labeled data under 0, 0.1%, and 0.3% Gaussian noise, and the predicted values obtained from training had a relative error within 0.5% of the true values, demonstrating the ability of physics-informed learning to perform inversion for unknown kinetic parameters under low-quality data.

Key words: methane dehydro-aromatization, physics-informed neural network, reaction kinetic model, inverse problem

摘要:

解决化学反应动力学建模的正问题和反问题研究有助于更深地理解反应机理,降低实验成本。本研究以一维填充床甲烷无氧芳构化(MDA)反应为案例,利用物理信息神经网络(PINN)将化学反应机理方程耦合到损失函数中,以此构建动力学建模和参数反演的求解框架。首先,通过正问题求解确定最佳神经网络超参数方案,结果表明构建的正问题模型在求解MDA反应动力学方程上有良好的预测性能,训练和外推的L2误差分别为0.19%和0.95%。在此基础上,在0、0.1%、0.3%高斯噪声下,利用标签数据反演反应速率常数,训练得到的预测值与真实值相对误差均在0.5%内,体现出了反问题模型在低质量数据下进行未知动力学参数反演的能力。

关键词: 甲烷无氧芳构化, 物理信息神经网络, 反应动力学模型, 反问题

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd