1 |
SKULAN Andrew J, BRUNOLD Thomas C, BALDWIN Jeffrey, et al. Nature of the peroxo intermediate of the W48F/D84E ribonucleotide reductase variant: Implications for O2 activation by binuclear non-heme iron enzymes[J]. Journal of the American Chemical Society, 2004, 126(28): 8842-8855.
|
2 |
LIU Wenchi, RALSTON Walter T, MELAET Gérôme, et al. Oxidative coupling of methane (OCM): Effect of noble metal (M = Pt, Ir, Rh) doping on the performance of mesoporous silica MCF-17 supported Mn x O y -Na2WO4 catalysts[J]. Applied Catalysis A: General, 2017, 545: 17-23.
|
3 |
KOSINOV Nikolay, HENSEN Emiel J M. Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization[J]. Advanced Materials, 2020, 32(44): 935-9648.
|
4 |
赵清锐, 韦力, 冯英杰, 等. 甲烷氧化偶联制乙烯反应器的研究进展[J]. 石油化工, 2022, 51(7): 815-822.
|
|
ZHAO Qingrui, WEI Li, FENG Yingjie, et al. Research progress of oxidative coupling of methane reactors[J]. Petrochemical Technology, 2022, 51(7): 815-822.
|
5 |
CORREDOR E Camilo, CHITTA Pallavi, Milind DEO. Membrane reactor system model for gas conversion to benzene[J]. Fuel, 2016, 179: 202-209.
|
6 |
姚琦敏, 江华东. 甲烷无氧直接转化反应动力学研究及设计模拟[J]. 工业催化, 2017, 25(12): 60-63.
|
|
YAO Qimin, JIANG Huadong. Kinetic study and simulation of methane non-oxidative conversion[J]. Industrial Catalysis, 2017, 25(12): 60-63.
|
7 |
JEONG Jaehun, HWANG Ahron, KIM Yong Tae, et al. Kinetic modeling of methane dehydroaromatization over a Mo2C/H-ZSM5 catalyst: Different deactivation behaviors of the Mo2C and H-ZSM5 sites[J]. Catalysis Today, 2020, 352: 140-147.
|
8 |
TRAORE B B, KAMSU-FOGUEM B, TANGARA F. Deep convolution neural network for image recognition[J]. Ecological Informatics, 2018, 48: 257-268.
|
9 |
KRIZHEVSKY A, SUTSKEVER Ilya, HINTON Geoffrey E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25(2): 1097-1105.
|
10 |
LI Hang. Deep learning for natural language processing: Advantages and challenges[J]. National Science Review, 2018, 5(1): 24-26.
|
11 |
TANG Shaoqiang, YANG Yang. Why neural networks apply to scientific computing?[J]. Theoretical and Applied Mechanics Letters, 2021, 11(3): 100242.
|
12 |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
|
13 |
RAISSI M, YAZDANI A, KARNIADAKIS G. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030.
|
14 |
陆至彬, 李依梦, 何畅, 等. 集成分区耦合策略的物理信息神经网络模拟共轭传热过程研究[J]. 化工学报, 2022, 73(12): 5483-5493.
|
|
LU Zhibin, LI Yimeng, HE Chang, et al. Integrating physics-informed neural networks with partitioned coupling strategy for modeling conjugate heat transfer[J]. CIESC Journal, 2022, 73(12): 5483-5493.
|
15 |
陆至彬, 瞿景辉, 刘桦, 等. 基于物理信息神经网络的传热过程物理场代理模型的构建[J]. 化工学报, 2021, 72(3): 1496-1503.
|
|
LU Zhibin, QU Jinghui, LIU Hua, et al. Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network[J]. CIESC Journal, 2021, 72(3): 1496-1503.
|
16 |
WU Zhiyong, ZHANG Bingjian, YU Haoshui, et al. Accelerating heat exchanger design by combining physics-informed deep learning and transfer learning[J]. Chemical Engineering Science, 2023, 282: 119285.
|
17 |
SAHLI COSTABAL Francisco, YANG Yibo, PERDIKARIS Paris, et al. Physics-informed neural networks for cardiac activation mapping[J]. Frontiers in Physics, 2020, 8: 42.
|
18 |
CHEN Yuyao, LU Lu, KARNIADAKIS George Em, et al. Physics-informed neural networks for inverse problems in nano-optics and metamaterials[J]. Optics Express, 2020, 28(8): 11618.
|
19 |
ROJAS Carlos J G, BOLDRINI Jos L, BITTENCOURT Marco L. Parameter identification for a damage phase field model using a physics-informed neural network[J]. Theoretical and Applied Mechanics Letters, 2023, 13(3): 100450.
|
20 |
Son Ich NGO, Young-Il LIM. Solution and parameter identification of a fixed-bed reactor model for catalytic CO2 methanation using physics-informed neural networks[J]. Catalysts, 2021, 11(11): 1304.
|
21 |
CAI Shengze, WANG Zhicheng, FUEST Frederik, et al. Flow over an espresso cup: Inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks[J]. Journal of Fluid Mechanics, 2021, 915: A102.
|
22 |
KARAKAYA Canan, MOREJUDO Selene Hernández, ZHU Huayang, et al. Catalytic chemistry for methane dehydroaromatization (MDA) on a bifunctional Mo/HZSM-5 catalyst in a packed bed[J]. Industrial & Engineering Chemistry Research, 2016, 55(37): 9895-9906.
|
23 |
ZHU Y, AL-EBBINNI N, HENNEY R, et al. Extension to multiple temperatures of a three-reaction global kinetic model for methane dehydroaromatization[J]. Chemical Engineering Science, 2018, 177: 132-138.
|