Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 21-31.DOI: 10.16085/j.issn.1000-6613.2024-1264
• Chemical processes and equipment • Previous Articles Next Articles
ZOU Zhiyun(), YU Meng, LIU Yingli
Received:
2024-08-02
Revised:
2024-10-22
Online:
2024-12-06
Published:
2024-11-20
Contact:
ZOU Zhiyun
通讯作者:
邹志云
作者简介:
邹志云(1965—),男,博士,研究员,博士生导师,研究方向为化工过程控制。E-mail:zouzhiyun65@163.com。
CLC Number:
ZOU Zhiyun, YU Meng, LIU Yingli. Prediction of operating conditions of batch distillation process based on LSTM and BP neural networks[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 21-31.
邹志云, 于蒙, 刘英莉. 基于LSTM和BP神经网络的间歇蒸馏过程工况预测[J]. 化工进展, 2024, 43(S1): 21-31.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1264
方法编号 | 建模方法 | 神经网络参数设置 | 数据重构方法 | 数据个数 | 均方差(MSE) | 平均绝对误差(MAE) |
---|---|---|---|---|---|---|
方法1 | LSTM | 隐藏层:2层 神经元:100个 学习率:0.006 迭代次数:300次 时间步:20 | 同一变量的不同批次数据随机相连 | 总体:3220个 训练:2110个 检验:1110个 | 0.0691 | 0.146811 |
方法2 | LSTM | 隐藏层:2层 神经元:100个 学习率:0.006 迭代次数:300次 时间步:20 | 同一变量的不同批次数据相连 后批次每个数据加上前批次最后一个数据 | 总体:3220个 训练:2110个 检验:1110个 | 0.0074 | 0.07212 |
方法3 | LSTM | 隐藏层:2层 神经元:120个 学习率:0.006 迭代次数:300次 时间步:14 | 筛选趋势大致相同的13批次数据 批次间数据首尾相连 | 总体:1820个 训练:1000个 检验:820个 | 0.001 | 0.0213 |
方法4 | BP | 隐含神经元:220个 训练函数:trainlm 收敛误差设置:0.0001 | 筛选趋势大致相同的13批次数据 批次间数据首尾相连 | 总体:1820个 训练:1680个 检验:140个 | 0.0015 | 0.0255 |
方法编号 | 建模方法 | 神经网络参数设置 | 数据重构方法 | 数据个数 | 均方差(MSE) | 平均绝对误差(MAE) |
---|---|---|---|---|---|---|
方法1 | LSTM | 隐藏层:2层 神经元:100个 学习率:0.006 迭代次数:300次 时间步:20 | 同一变量的不同批次数据随机相连 | 总体:3220个 训练:2110个 检验:1110个 | 0.0691 | 0.146811 |
方法2 | LSTM | 隐藏层:2层 神经元:100个 学习率:0.006 迭代次数:300次 时间步:20 | 同一变量的不同批次数据相连 后批次每个数据加上前批次最后一个数据 | 总体:3220个 训练:2110个 检验:1110个 | 0.0074 | 0.07212 |
方法3 | LSTM | 隐藏层:2层 神经元:120个 学习率:0.006 迭代次数:300次 时间步:14 | 筛选趋势大致相同的13批次数据 批次间数据首尾相连 | 总体:1820个 训练:1000个 检验:820个 | 0.001 | 0.0213 |
方法4 | BP | 隐含神经元:220个 训练函数:trainlm 收敛误差设置:0.0001 | 筛选趋势大致相同的13批次数据 批次间数据首尾相连 | 总体:1820个 训练:1680个 检验:140个 | 0.0015 | 0.0255 |
1 | NIAZI Saber, DÍAZ-LÓPEZ José Antonio, Antonio NIETO-MÁRQUEZ. Process design and simulation of methyl isobutyl ketone (MIBK) dehydration by batch distillation: A study on unit configuration and operational policies[J]. Separation and Purification Technology, 2024, 350: 127942. |
2 | LUYBEN William L. Aspen dynamics simulation of a middle-vessel batch distillation process[J]. Journal of Process Control, 2015, 33: 49-59. |
3 | HEGELY Laszlo, KARAMAN Ömer Faruk, SZUCS Marton Tamas, et al. Surrogate model-based optimisation of a batch distillation process[J]. Chemical Engineering Research and Design, 2023, 192: 456-467. |
4 | HEGELY Laszlo. Direct search methods for the fast optimisation of batch distillation processes[J]. Separation and Purification Technology, 2023, 306: 122448. |
5 | WEERACHAIPICHASGUL Weerawun, KITTISUPAKORN Paisan, SAENGCHAN Aritsara, et al. Batch distillation control improvement by novel model predictive control[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(2): 305-313. |
6 | SAFDARNEJAD Seyed Mostafa, GALLACHER Jonathan R, HEDENGREN John D. Dynamic parameter estimation and optimization for batch distillation[J]. Computers & Chemical Engineering, 2016, 86: 18-32. |
7 | ZHOU Yuanqiang, GAO Furong. Smart batch process: The evolution from 1D and 2D to new 3D perspectives in the era of Big Data[J]. Journal of Process Control, 2023, 130: 103088. |
8 | 刘兴红, 邹志云, 刘景全, 等. 数据挖掘技术用于间歇蒸馏过程转馏分点的在线预报[J]. 计算机与应用化学, 2012, 29(1): 122-126. |
LIU Xinghong, ZOU Zhiyun, LIU Jingquan, et al. Online prediction of the distillate transferring point in batch distillation process using data mining technology[J]. Computers and Applied Chemistry, 2012, 29(1): 122-126. | |
9 | 邹志云, 朱文超, 刘英莉, 等. 小型特种精细化工过程自动化和信息化研究发展趋势探讨[J]. 化工进展, 2020, 39(S2): 269-275. |
ZOU Zhiyun, ZHU Wenchao, LIU Yingli, et al. Discussion on the development trend of small scale special fine chemical process automation and informatization[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 269-275. | |
10 | 李扬, 许明阳, 马方圆, 等. 基于流程拓扑信息的统计过程监测方法[J]. 化工进展, 2021, 40(S1): 75-80. |
LI Yang, XU Mingyang, MA Fangyuan, et al. Statistical process monitoring method based on process topology information[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 75-80. | |
11 | 刘兴红, 邹志云, 刘景全, 等. 自回归求和滑动平均方法用于间歇过程变量在线预测[J]. 石油化工自动化, 2012, 48(2): 41-44. |
LIU Xinghong, ZOU Zhiyun, LIU Jingquan, et al. Online prediction of batch process variables using data reconstruction-autoregressive integrated moving average method[J]. Automation in Petro-Chemical Industry, 2012, 48(2): 41-44. | |
12 | 于蒙. 基于数据驱动的间歇化工过程批次内和批次间复合优化控制策略研究[D]. 北京: 军事科学院, 2021. |
YU Meng. Research on compound optimization control strategy within batch and between batches of batch chemical process based on data-driven technique[D]. Beijing: Academy of Military Sciences, 2021. | |
13 | CONRADIE Alex V E, ALDRICH Chris. Neurocontrol of a multi-effect batch distillation pilot plant based on evolutionary reinforcement learning[J]. Chemical Engineering Science, 2010, 65(5): 1627-1643. |
14 | RODRIGUEZ-ROBLES Christian Felipe, Héctor HERNÁNDEZ-ESCOTO, Salvador HERNÁNDEZ. Solution of the maximum distillate on a batch distillation column by a Pseudo-Newton method[J]. Results in Engineering, 2023, 19: 101232. |
15 | LI Wenhao, LI Xinhao, YUAN Jiale, et al. Pressure prediction for air cyclone centrifugal classifier based on CNN-LSTM enhanced by attention mechanism[J]. Chemical Engineering Research and Design, 2024, 205: 775-791. |
16 | BAI Yiming, XIANG Shuaiyu, CHENG Feifan, et al. A dynamic-inner LSTM prediction method for key alarm variables forecasting in chemical process[J]. Chinese Journal of Chemical Engineering, 2023, 55: 266-276. |
17 | 刘泉伯, 李晓理, 王康. 基于深度AttLSTM网络的脱硫过程建模[J]. 北京工业大学学报, 2024, 50(2): 140-151. |
LIU Quanbo, LI Xiaoli, WANG Kang. Desulfurization process modeling by using deep AttLSTM-based network[J]. Journal of Beijing University of Technology, 2024, 50(2): 140-151. | |
18 | 孙悦鹏, 孙延吉, 潘艳秋, 等. 基于BO-LSTM的低温甲醇洗净化气CO2含量预测[J]. 化工进展. DOI:10.16085/j.issn.1000-6613.2024-0244 . |
SUN Yuepeng, SUN Yanji, PAN Yanqiu, et al. Prediction of CO2 content in Rectisol purified gas based on BO-LSTM[J]. Chemical Industry and Engineering Progress. DOI:10.16085/j.issn.1000-6613.2024-0244 . | |
19 | 汪洁, 张婷暄, 张君健, 等. 基于LSTM神经网络的干燥含水量预测研究[J]. 辽宁化工, 2023, 52(12): 1722-1726, 1730. |
WANG Jie, ZHANG Tingxuan, ZHANG Junjian, et al. Research on dry water content prediction based on LSTM neural network[J]. Liaoning Chemical Industry, 2023, 52(12): 1722-1726, 1730. | |
20 | 崔劲松, 贾波, 李学盛, 等. 化工过程预警的CNN-LSTM耦合模型研究[J]. 过程工程学报, 2024, 24(8): 937-945. |
CUI Jinsong, JIA Bo, LI Xuesheng, et al. Research on CNN-LSTM coupling model for chemical process early warning[J]. The Chinese Journal of Process Engineering, 2024, 24(8): 937-945. |
[1] | DAI Zhengshu, ZUO Yuanhao, CHEN Xiaoluo, ZHANG Li, ZHAO Gen, ZHANG Xuejun, ZHANG Hua. Process in the application of machine learning in ejector research [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 1-12. |
[2] | LIANG Yongqi, TANG Jian, XIA Heng, CHEN Jiakun, QIAO Junfei. Modeling and analysis of particulate matter concentration in incinerator under benchmark conditions based on coupled numerical simulation [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 106-120. |
[3] | MAO Ningxuan, WAN Xiaowei, JU Jie, HU Yanjie, JIANG Hao. Numerical simulation and structural optimization of flow field in industrial gas-solid fluidized beds based on CFD-PBM [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 13-20. |
[4] | XU Qingqing, ZHANG Xuan, ZHAO Ruidong, XIONG Xin, JIANG Lumeng, YU Shengyang. Bayesian network risk assessment method for hydrogen blending natural gas pipeline leakage [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 61-70. |
[5] | TAO Yi, ZHANG Chen, HU Yijiong, QIU Tong. Molecular reconstruction model of vacuum gas oil based on molecular structural distribution [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 71-76. |
[6] | CAO Shuyang, SHI Jingbo, DONG Youming, LYU Jianxiong. Water adsorption and desorption isotherms and thermodynamic properties of Eucalyptus obliqua woods at different temperatures [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5095-5105. |
[7] | WANG Yanan, LIU Linlin, ZHUANG Yu, DU Jian. Synchronous optimization and heat integration of the production process from EO to EG based on surrogate model [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5234-5241. |
[8] | LI Yimeng, CHEN Yunquan, HE Chang, ZHANG Bingjian, CHEN Qinglin. Forward and reverse problems of methane dehydro-aromatization based on physics-informed neural network [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4817-4823. |
[9] | ZHANG Jiaxin, ZHANG Miao, DAI Yiyang, DONG Lichun. Design and application of enhanced deep convolutional neural networks model for fault diagnosis in practical chemical processes [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4833-4844. |
[10] | XIE Juan, HE Wen, ZHAO Xucheng, LI Shuaihui, LU Zhenzhen, DING Zheyu. Research progress on the application of molecular dynamics simulation in asphalt systems [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4432-4449. |
[11] | HUAI Liye, ZHONG Zhaoping, YANG Yuxuan. Characteristics and mechanism of desulfurization gypsum to α-hemihydrate gypsum: Experiments and simulations [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4694-4703. |
[12] | GUO Changbin, LI Mengmeng, FENG Menghan, YUAN Tian, ZHANG Keqiang, LUO Yanli, WANG Feng. Preparation of Ce-doped La-based perovskite and its adsorption properties for phosphate and phytic acid in water [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4748-4756. |
[13] | WANG Shiwei, WANG Chao, GUO Qi, DING Hongbing. Image reconstruction of flow field for supersonic separator based on model modification and algorithm optimization of ECT [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4222-4229. |
[14] | LI Kai, WEI Helin, YIN Zhifan, ZUO Xiahua, YU Xiaoyu, YIN Hongyuan, YANG Weimin, YAN Hua, AN Ying. Prediction of thermal conductivity and viscosity of water-based carbon black nanofluids based on GA-BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4138-4147. |
[15] | TANG Anqi, WEI Xin, DING Liming, WANG Yujie, XU Yixiao, LIU Yiqun. Discussing physical aging phenomenon of polyimide gas separation membranes [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3923-3933. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |